Câu hỏi:

13/07/2024 2,024

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của ACBD, AC = 2a, BD = 2b; tam giác SBD là tam giác đều. Gọi I là điểm nằm trên đoạn thẳng AC sao cho AI = x (0 < x < a), (P) là mặt phẳng đi qua điểm I và song song với mặt phẳng (SBD).

a) Xác định giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của AC và BD, AC = 2a, BD = 2b; tam giác SBD là tam giác đều. Gọi I là điểm nằm trên đoạn thẳng AC sao cho AI = x (0 < x < a), (P) là mặt phẳng đi qua điểm I và song song với mặt phẳng (SBD). a) Xác định giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD. (ảnh 1)

a) Trong mặt phẳng (ABCD), kẻ MN đi qua IMN // BD (M AB, N AD).

Trong mặt phẳng (SAD), kẻ NJ // SD (J SA).

Trong mặt phẳng (SAB), nối JM.

Ta có MN // BD và BD (SBD) nên MN // (SBD). Do đó mặt phẳng (P) chính là mặt phẳng (MNJ)

Khi đó, (P) ∩ (SAB) = JM; (P) ∩ (SAD) = JN; (P) ∩ (ABCD) = MN.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác S.ABCD. Gọi M và N lần lượt là trung điểm của SA và SC. Khẳng định nào sau đây đúng? A. MN // (ABCD). B. MN // (SAB). C. MN // (SAD). D. MN // (SCD). (ảnh 1)

Xét ∆SAC có MN lần lượt là trung điểm của SASC nên MN là đường trung bình của tam giác

Do đó MN // AC

Mà AC (ABCD) nên MN // (ABCD).

Lời giải

Đáp án đúng là: B

a // b, a // (P) thì b // (P) hoặc b (P);

a // b, a cắt (P) thì b cắt (P);

a // b, a (P) thì b // (P) hoặc b (P).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay