Câu hỏi:

13/07/2024 22,612

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA (ABCD). Tính số đo của mỗi góc nhị diện sau:

a) [B, SA, D];

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD). Tính số đo của mỗi góc nhị diện sau: a) [B, SA, D]; (ảnh 1)

a) Ta có: SA (ABCD) và AB (ABCD), AD (ABCD).

Suy ra: SA AB, SA AD.

Mà AB ∩ AD = A SA.

Do đó BAD^ là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hình vuông nên BAD^ =900

Vậy số đo của góc nhị diện [B, SA, D] bằng 90°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Ta có: SA (ABCD) và AB (ABCD), AD (ABCD).

Suy ra: SA AB, SA AD.

Mà AB ∩ AD = A SA.

Do đó BAD^ là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều.

Khi đó CAD^=60°.

Ta có:BAD^=BAC^+CAD^=60°+60°=120°.

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°

Lời giải

Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a. a) Tính số đo của góc nhị diện [B, SA, C]. (ảnh 1)

a) Ta có: SA (ABCD) và AB (ABCD), AC (ABCD).

Suy ra: SA AB, SA AC.

Mà AB ∩ AC = A SA.

Do đó BAC^ là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.

Suy ra tam giác ABC đều. Khi đó BAC^=60°.

Vậy số đo của góc nhị diện [B, SA, C] = 60°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP