Quảng cáo
Trả lời:
b) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AD ⊂ (ABCD).
Suy ra: SA ⊥ AB, SA ⊥ AD.
Mà AB ∩ AD = A ∈ SA.
Do đó là góc phẳng nhị diện của góc nhị diện [B, SA, D].
Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.
Suy ra tam giác ACD đều.
Khi đó
Ta có:
Vậy số đo của góc nhị diện [B, SA, D] bằng 120°
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a. a) Tính số đo của góc nhị diện [B, SA, C]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/11/blobid5-1700034469.png)
a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AC ⊂ (ABCD).
Suy ra: SA ⊥ AB, SA ⊥ AC.
Mà AB ∩ AC = A ∈ SA.
Do đó là góc phẳng nhị diện của góc nhị diện [B, SA, C].
Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.
Suy ra tam giác ABC đều. Khi đó
Vậy số đo của góc nhị diện [B, SA, C] = 60°.
Lời giải

Gọi d là đường thẳng chứa bản lề của máy tính.
Suy ra d ⊥ AB, d ⊥ AC.
Mặt khác AB ∩ AC = A ∈ d.
Như vậy, là góc phẳng nhị diện của góc nhị diện [A, d, C].
Áp dụng hệ quả của định lí Cosin trong tam giác ABC ta có:
Vậy độ mở của màn hình máy tính là 120°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.