Câu hỏi:
13/07/2024 3,558Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 4. Hai mặt phẳng vuông góc có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.
Ta cần chứng minh rằng tồn tại một đường thẳng a nằm trong mặt phẳng (P) sao cho đường thẳng a vuông góc với mặt phẳng (Q).
Thật vậy, ta lấy:
⦁ d là giao tuyến của hai mặt phẳng (P) và (Q);
⦁ a là đường thẳng nằm trong mặt phẳng (P) sao cho a ⊥ d;
· O là giao điểm của đường thẳng a và mặt phẳng (Q).
Do hai mặt phẳng (P) và (Q) cùng chứa điểm O nên hai mặt phẳng đó cắt nhau theo giao tuyến d đi qua O.
Trong mặt phẳng (Q), qua O kẻ đường thẳng b vuông góc với d.
Như vậy ta có: d là cạnh của góc nhị diện [P, d, Q];
a ⊂ (P) và a ⊥ d tại O (với O ∈ d);
b ⊂ (Q) và b ⊥ d tại O (với O ∈ d);
Suy ra ^aOb là góc phẳng nhị diện của góc nhị diện [P, d, Q].
Mặt khác (P) ⊥ (Q) nên góc nhị diện [P, d, Q] vuông hay ^aOb=90°.
Suy ra a ⊥ b.
Ta có: a ⊥ d, a ⊥ b và d ∩ b = O trong (Q).
Suy ra a ⊥ (Q).
Vậy nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng (SAC) ⊥ (SBD).
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD);
Câu 3:
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.
Câu 4:
Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.
Câu 5:
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).
a) Chứng minh rằng AA’ ⊥ (ABC).
Câu 6:
Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:
a) (SAB) ⊥ (SBC);
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận