Câu hỏi:

16/11/2023 2,272

Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, AC. Khẳng định nào sau đây sai?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, AC. Khẳng định nào sau đây sai? A. EF // MC; B. MN // EF; C. PQ // EF; D. M, N, P, Q thẳng hàng. (ảnh 1)

Ta có QD AC, HE AC (H BE) nên HE // QD hay BE // QD (H BE).

Xét tam giác ADQ có HE // DQ nên theo định lí Thalès ta có:  AEEQ=AHHD (1).

Có HF AB (H CF), DM AB nên HF // DM hay CF // DM.

Xét tam giác AMD có HF // DM nên theo định lí Thalès ta có: AFFM=AHHD  (2).

Từ (1) và (2) suy ra  AEEQ=AFFM.

Trong tam giác AMQ có  nên EF // MQ (định lí Thaslès đảo) (*).

Xét tam giác BFC có CF // DM nên theo định lí Thalès ta có: BMBF=BDBC  (3).

Có DN BE, BE EC (E AC) nên DN // CE.

Xét tam giác BEC có DN // CE nên theo định lí Thalès ta có: BNBE=BDBC  (4).

Từ (3) và (4) suy ra BMBF=BNBE .

Trong tam giác BEF có BMBF=BNBE nên MN // EF (định lí Thaslès đảo) (**).

Xét tam giác BEC có QD // BE nên theo định lí Thalès ta có: CQQE=CDDB  (5).

Có DP CF, BF CF (F AB) nên DP // BF.

Xét tam giác BFC có  DP // BF nên theo định lí Thalès ta có:  CPPF=CDDB(6).

Từ (5) và (6) suy ra CQQE=CPPF .

Trong tam giác CEF có CQQE=CPPF  nên PQ // EF (định lí Thaslès đảo)(***)

Từ (*), (**), (***) suy ra M, N, P, Q thẳng hàng.

Vậy A sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Điểm O nằm trong tam giác. Lấy điểm D trên AO, từ D kẻ DE // AB (E OB) và DF // AC (F OC). Khẳng định nào sau đây là sai?

Xem đáp án » 16/11/2023 8,750

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Từ điểm D nằm giữa H và C, vẽ DE DC (E AC), DK AC (K AC). Khi đó BE song song với

Xem đáp án » 16/11/2023 3,756

Câu 3:

Cho hình bên, biết AB = 9 cm, AC = 12 cm, IB = 6 cm, KC = 8 cm. Kết luận nào sau đây là đúng?

Cho hình bên, biết AB = 9 cm, AC = 12 cm, IB = 6 cm, KC = 8 cm. Kết luận nào sau đây là đúng?   A. IK ⊥ BC; B. IK // BC; C. IK = BC;  D. Cả A, B, C đều sai. (ảnh 1)

Xem đáp án » 16/11/2023 3,318

Câu 4:

Cho tam giác ABC có điểm M trên cạnh BC sao cho BC = 4CM. Trên cạnh AC lấy điểm N sao cho CNAN=13  . Khẳng định nào sau đây là đúng khi nói về mối quan hệ giữa hai đường thẳng AB và MN.

Xem đáp án » 16/11/2023 1,494

Câu 5:

Cho hình vẽ. Chọn đáp án đúng trong các đáp án sau.

Cho hình vẽ. Chọn đáp án đúng trong các đáp án sau.    A. AD // EC; B. DE // AC; C. DE // BC; D. BE // AC. (ảnh 1)

Xem đáp án » 16/11/2023 1,148

Câu 6:

Cho tứ giác MNPQ, gọi K, L lần lượt là trọng tâm của tam giác MNP và NPQ. Khi đó KL song song với đường thẳng nào dưới đây?

Xem đáp án » 16/11/2023 683
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua