Phương trình x3 – 1000x2 + 0,01 có nghiệm trong khoảng
Phương trình x3 – 1000x2 + 0,01 có nghiệm trong khoảng
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét hàm số f(x) = x3 – 1000x2 + 0,01.
Hàm số liên tục trên ℝ.
f(‒1) = ‒1000,99; f(0) = 0,01; f(1) = ‒998,99.
Ta thấy f(‒1) . f(0) < 0; f(0) . f(1) < 0 nên phương trình đã cho có ít nhất một nghiệm trong các khoảng (‒1; 0) và (0; 1).
Vậy đáp án đúng là C.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b). Cần chú ý về các khoảng và đoạn khi xác định số nghiệm của phương trình.
Câu 2
Lời giải
Đáp án đúng là: C
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.