Câu hỏi:
06/03/2024 669
Xác định a, b của hàm số sao cho đồ thị hàm số:
a) Đi qua điểm A(3;-1) và B(2;-5)
b) Đi qua giao điểm của hai đường thẳng và và đồ thị hàm số song song với đường thẳng
c) Vuông góc với đường thẳng và cắt trục tung tại điểm có tung độ bằng 
Xác định a, b của hàm số sao cho đồ thị hàm số:
a) Đi qua điểm A(3;-1) và B(2;-5)
b) Đi qua giao điểm của hai đường thẳng và và đồ thị hàm số song song với đường thẳng
c) Vuông góc với đường thẳng và cắt trục tung tại điểm có tung độ bằng
Câu hỏi trong đề: Đề kiểm tra Giữa kì 2 Toán 8 CTST có đáp án !!
Quảng cáo
Trả lời:
a) Đồ thị hàm số đi qua điểm nên ta có:
do đó
Đồ thị hàm số đi qua điểm nên ta có:
Thay vào (*) ta được:
Suy ra
Vậy và
b) Do đồ thị hàm số song song với đường thẳng nên ta có và Khi đó ta có hàm số
Hoành độ giao điểm của và là nghiệm của phương trình:
Thay vào hàm số ta được
Do đó hai đường thẳng và cắt nhau tại điểm (4;5)
Do đường thẳng đi qua điểm (4;5) nên ta có:
do đó (thỏa mãn).
Vậy và
c) Do đường thẳng vuông góc với đường thẳng nên ta có suy ra (thỏa mãn). Khi đó ta có hàm số
Đường thẳng cắt trục tung tại điểm có tung độ bằng 5 nên ta có:
do đó
Vậy a = 4 và b = 5.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số biểu diễn số tiền lời (hoặc lỗ) K của nhà may thu được khi bán t chiếc áo là: (đồng) (với
Để nhà may thu hồi được vốn ban đầu thì ta thay vào công thức ta được:
suy ra
Vậy cần phải bán ra được 100 chiếc áo mới thu hồi được vốn ban đầu.
b) Để nhà may lời được thì thay vào công thức ta được:
suy ra
Vậy cần phải bán ra được 120 chiếc áo mới lời được 6 000 000 đồng.
Lời giải

a) Xét có MD là đường phân giác của nên (1) (tính chất đường phân giác của tam giác).
Xét có ME là đường phân giác của nên (2) (tính chất đường phân giác của tam giác).
Do AM là đường trung tuyến của nên M là trung điểm của BC hay
Từ (1), (2) và (3) ta có
Theo tính chất tỉ lệ thức ta có hay suy ra
Xét có theo định lí Thalès đảo ta có
b) Xét có theo hệ quả định lí Thalès ta có
Xét có theo hệ quả định lí Thalès ta có
Do đó
Mà (chứng minh ở câu a) nên hay I là trung điểm của DE
c) Ta có
Theo câu a, ta có suy ra
Do đó
Xét có theo hệ quả định lí Thalès ta có
Suy ra
d) Để DE là đường trung bình của thì D, E lần lượt là trung điểm của AB, AC
Xét có MD vừa là đường trung tuyến, vừa là đường phân giác nên là tam giác cân tại M. Suy ra MA = MB (tính chất tam giác cân).
Tương tự, ta cũng chứng minh được MA = MC
Do đó
Xét có đường trung tuyến AM bằng nửa cạnh BC nên vuông tại A
Vậy phải là tam giác vuông tại A thì DE là đường trung bình của tam giác đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.