Câu hỏi:

12/07/2024 2,408

Cho ΔABC, trung tuyến AM đường phân giác của AMB^ cắt AB D đường phân giác của AMC^ cắt AC E.

a) Chứng minh rằng ADAC=AEAB và DE // BC.

b) Gọi I là giao điểm của AMDE. Chứng minh rằng I là trung điểm của DE.

c) Tính DE, biết BC=30 cm và AM=10 cm.

d) Tam giác ABC phải thêm điều kiện gì để DE là đường trung bình của tam giác đó?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC trung tuyến AM đường phân giác của góc AMB cắt AB ở D đường phân giác của  góc AMC cắt AC ở E. (ảnh 1)

a) Xét ΔABM có MD là đường phân giác của AMB^ nên MAMB=DADB (1) (tính chất đường phân giác của tam giác).

Xét ΔACM có ME là đường phân giác của AMC^ nên MAMC=EAEC (2) (tính chất đường phân giác của tam giác).

Do AM là đường trung tuyến của ΔABC nên M là trung điểm của BC hay MB=MC=12BC.   3

Từ (1), (2) và (3) ta có DADB=EAEC. 

Theo tính chất tỉ lệ thức ta có DADA+DB=EAEA+EC, hay ADAB=AEAC, suy ra ADAC=AEAB.

Xét ΔABC ADAB=AEAC, theo định lí Thalès đảo ta có DE // BC.

b) Xét ΔABM DI // BM, theo hệ quả định lí Thalès ta có DIBM=AIAM.

Xét ΔACM IE // MC, theo hệ quả định lí Thalès ta có IEMC=AIAM.

Do đó DIBM=IEMC. 

MB=MC (chứng minh ở câu a) nên DI=IE, hay I là trung điểm của DE

c) Ta có MB=MC=12BC=1230=15 cm.

Theo câu a, ta có DADB=MAMB, suy ra DADA+DB=MAMA+MB=1010+15=1025=25.

Do đó ADAB=25.

Xét ΔABC DE // BC, theo hệ quả định lí Thalès ta có DEBC=ADAB=25.

Suy ra DE=25BC=2530=12 cm.

d) Để DE là đường trung bình của ΔABC thì D, E lần lượt là trung điểm của AB, AC

Xét ΔABM  có MD vừa là đường trung tuyến, vừa là đường phân giác nên là tam giác cân tại M. Suy ra MA = MB (tính chất tam giác cân).

Tương tự, ta cũng chứng minh được MA = MC

Do đó MA=MB=MC=12BC.

Xét ΔABC có đường trung tuyến AM bằng nửa cạnh BC nên ΔABC vuông tại A

Vậy ΔABC phải là tam giác vuông tại A thì DE là đường trung bình của tam giác đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nhà may A sản xuất một lô áo gồm 200 chiếc áo với giá vốn là 30 000 000 (đồng) và giá bán một chiếc áo là 300 000 (đồng). Khi đó gọi K (đồng) là số tiền lời (hoặc lỗ) củ nhà may thu được khi bán t chiếc áo.

a) Viết hàm số biểu diễn số tiền lời (hoặc lỗ) K của nhà may thu được khi bán t chiếc áo. Hỏi nhà may cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu?

b) Để lời được 6 000 000 đồng thì nhà may cần phải bán bao nhiêu chiếc áo?

Xem đáp án » 12/07/2024 3,770

Câu 2:

Cho hình vẽ bên. Tỉ số ACCD bằng

Cho hình vẽ bên. Tỉ số AC/CD bằng (ảnh 1)

Xem đáp án » 06/03/2024 467

Câu 3:

Xác định a, b của hàm số y=ax+b a0 sao cho đồ thị hàm số:

a) Đi qua điểm A(3;-1)B(2;-5)

b) Đi qua giao điểm của hai đường thẳng d1:y=x+1 d2:y=2x3, và đồ thị hàm số song song với đường thẳng y=32x24.

c) Vuông góc với đường thẳng y=14x+9 và cắt trục tung tại điểm có tung độ bằng

Xem đáp án » 06/03/2024 366

Câu 4:

Hệ số góc của đường thẳng y=14x2 

Xem đáp án » 06/03/2024 313

Câu 5:

Cho hình bên, trong đó DE//BC, AD = 12 cm, DB = 18 cmCE = 30 cm Độ dài AC

Cho hình bên, trong đó DE//BC, AD = 12 cm, DB = 18 cm và CE = 30 cm Độ dài AC là (ảnh 1)

Xem đáp án » 06/03/2024 297

Câu 6:

Cho hàm số fx=212x. Giá trị f2 bằng

Xem đáp án » 06/03/2024 261

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store