Câu hỏi:
11/07/2024 121Sự tăng trưởng của một loài vi khuẩn được tính theo công thức $f\left( t \right) = A{e^{rt}}$, trong đó $A$ là số lượng vi khuẩn ban đầu, $r$ là tỷ lệ tăng trưởng ($r > 0$), $t$ (tính theo giờ) là thời gian tăng trưởng. Biết số vi khuẩn ban đầu có 1 000 con và sau 10 giờ là 5 000 con. Hỏi sao bao lâu thì số lượng vi khuẩn tăng gấp 10 lần?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số vi khuẩn ban đầu có 1 000 con và sau 10 giờ là 5 000 con. Áp dụng công thức $f\left( t \right) = A{e^{rt}}$, ta có: $f\left( {10} \right) = 1\,000{e^{r \cdot 10}} = 5000$. Suy ra $r = \frac{{\ln 5}}{{10}}$.
Giả sử $t$ là thời gian để số lượng vi khuẩn tăng gấp 10 lần.
Khi đó ta có: $10\,000 = 1\,000{e^{rt}} \Leftrightarrow {e^{rt}} = 10 \Leftrightarrow rt = \ln 10 \Leftrightarrow t = \frac{{\ln 10}}{r}$
Do đó, $t = \ln 10:\frac{{\ln 5}}{{10}} = \frac{{10\ln 10}}{{\ln 5}} = 10{\log _5}10 \approx 14,31$.
Vậy sau khoảng 14,31 giờ thì số lượng vi khuẩn tăng gấp 10 lần.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho hình lập phương $ABCD.A'B'C'D'$ (như hình vẽ dưới).
Đường thẳng nào sau đây vuông góc với đường thẳng $BC'$?
Câu 5:
Cho hình lập phương $ABCD.A'B'C'D'$ (như hình vẽ dưới).
Góc giữa hai đường thẳng $AB$ và $A'C'$ bằng
Câu 7:
Cho $0 < a \ne 1$. Giá trị của biểu thức $P = {\log _a}\left( {a \cdot \sqrt[3]{{{a^2}}}} \right)$ là
về câu hỏi!