Câu hỏi:
13/07/2024 1,438Quảng cáo
Trả lời:
Sau bài học này, ta có thể tính được phương sai và độ lệch chuẩn của mẫu số liệu ở biểu đồ trên như sau:
Từ biểu đồ, ta lập được bảng tần số ghép nhóm sau:
Chiều cao (cm) |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
Số học sinh |
3 |
5 |
8 |
4 |
1 |
Ta có bảng thống kê chiều cao của các học sinh nữ lớp 12 theo giá trị đại diện:
Chiều cao đại diện (cm) |
162 |
166 |
170 |
174 |
178 |
Tần số |
3 |
5 |
8 |
4 |
1 |
Cỡ mẫu n = 3 + 5 + 8 + 4 + 1 = 21.
Số trung bình của mẫu số liệu ghép nhóm là:.
Phương sai của mẫu số liệu ghép nhóm là:
≈ 18,14.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có bảng sau:
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
Giá trị đại diện |
19,25 |
19,75 |
20,25 |
20,75 |
21,25 |
Tần số |
13 |
45 |
24 |
12 |
6 |
Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
[13 ∙ (19,25)2 + 45 ∙ (19,75)2 + 24 ∙ (20,25)2
+ 12 ∙ (20,75)2 + 6 ∙ (21,25)2] – (20,015)2 ≈ 0,277.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
a) Mẫu số liệu đã cho đã được xếp theo thứ tự không giảm.
Khoảng biến thiên của mẫu số liệu là:
R = 61,1 – 42 = 19,1 (km/h).
Cỡ mẫu n = 20.
Tứ phân vị thứ nhất là trung vị của mẫu số liệu:
42 |
43,4 |
43,4 |
46,5 |
46,7 |
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
Do đó, .
Tứ phân vị thứ ba là trung vị của mẫu số liệu:
50,8 |
52,1 |
52,7 |
53,9 |
54,8 |
55,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Do đó, .
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = 55,2 – 46,75 = 8,45.
Số trung bình của mẫu số liệu là: .
Phương sai của mẫu số liệu là:
S2 = [422 + (43,4)2 + (43,4)2 + … + (60,3)2 + (61,1)2] – (50,945)2 ≈ 32,2.
Độ lệch chuẩn của mẫu số liệu là: .
b) Ta lập được bảng tần số ghép nhóm như sau:
Tốc độ (km/h) |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
Số xe |
3 |
7 |
4 |
3 |
3 |
c) Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R' =62 – 42 = 20 (km/h).
Gọi x1; x2; …; x20 là mẫu số liệu gốc về tốc độ của 20 xe hơi đi qua một trạm kiểm tra tốc độ được xếp theo thứ tự không giảm.
Ta có x1; x2; x3 ∈ [42; 46), x4; …; x10 ∈ [46; 50), x11; …; x14 ∈ [50; 54),
x15; …; x17 ∈ [54; 58), x18; x19; x20 ∈ [58; 62).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [46; 50).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là ∈ [54; 58).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆'Q = Q'3 – Q'1 = ≈ 8,19.
Từ bảng tần số ghép nhóm, ta có bảng sau:
Tốc độ (km/h) |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
Giá trị đại diện |
44 |
48 |
52 |
56 |
60 |
Số xe |
3 |
7 |
4 |
3 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S'2 = (3 ∙ 442 + 7 ∙ 482 + 4 ∙ 522 + 3 ∙ 562 + 3 ∙ 602) – (51,2)2 = 26,56.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.