Cho hình chóp $S.ABCD$, gọi $O$ là giao điểm của hai đường chéo $BD$ và $AC.$ Phát biểu nào dưới đây đúng?
Cho hình chóp $S.ABCD$, gọi $O$ là giao điểm của hai đường chéo $BD$ và $AC.$ Phát biểu nào dưới đây đúng?
A. Đường thẳng $SO$ là giao tuyến của hai mặt phẳng $\left( {SAC} \right)$ và $\left( {ABCD} \right).$
B. Đường thẳng $SO$ là giao tuyến của hai mặt phẳng $\left( {SAC} \right)$ và $\left( {SBD} \right).$
C. Đường thẳng $SO$ là giao tuyến của hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SBD} \right).$
D. Đường thẳng $SO$ là giao tuyến của hai mặt phẳng $\left( {SAB} \right)$ và $\left( {SAC} \right).$
Quảng cáo
Trả lời:

Chọn B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. ${u_n} = {n^{n - 1}}.$
Lời giải
Chọn C
Lời giải
Theo quy luật trang trí một hình vuông trên thì ta có các tam giác được tô màu sẽ là tam giác vuông cân.
Gọi ${u_n}$ là diện tích của hai tam giác được tô màu sau lần vẽ thứ $n$, với $n \in {\mathbb{N}^*}.$
Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ đầu tiên là $\frac{4}{2} = 2\,\,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ đầu tiên là
${u_1} = 2\left( {\frac{1}{2}.2.2} \right) = 4$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$
Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ hai là $\frac{1}{2}.\sqrt {{2^2} + {2^2}} \, = \sqrt 2 \,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ hai là
${u_2} = 2\left( {\frac{1}{2}.\sqrt 2 .\sqrt 2 } \right) = 4.\frac{1}{2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$
Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ ba là\[\frac{1}{2}.\sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = 1\,\,\left( {\text{m}} \right).\] Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ ba là
${u_3} = 2\left( {\frac{1}{2}.1.1} \right) = 4.{\left( {\frac{1}{2}} \right)^2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$
Khi đó, dãy số $\left( {{u_n}} \right)$ là một cấp số nhân với số hạng đầu ${u_1} = 4$ và công bội $q = \frac{1}{2}.$
Ta có công thức số hạng tổng quát ${u_n} = 4.{\left( {\frac{1}{2}} \right)^{n - 1}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$
Tổng diện tích của các tam giác được tô màu sau lần vẽ thứ 10 là:
${S_{10}} = \frac{{4\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}} = \frac{{1\,\,023}}{{128}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$
Vậy số tiền nước sơn là $\frac{{1\,\,023}}{{128}}.80\,\,000 = 639\,\,375$ đồng.
Câu 3
D. $130^\circ $.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. $1;\,\, - \frac{1}{3};\,\,\frac{1}{9};\,\, - \frac{1}{{27}};...$
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. 38.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. $a = - 2.$
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
B. $D = \mathbb{R}\backslash \left\{ 0 \right\}.$
D. $D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.$
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.