Câu hỏi:

19/08/2025 325 Lưu

Cho hình chóp $S.ABC$, gọi $M,\,\,P$$I$ lần lượt là trung điểm của $AB,\,\,SC$$SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$

a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.

b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?

c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD, gọi M, P và I lần lượt là (ảnh 1)

a) Ta có $IP$ là đường trung bình của tam giác $SBC$ nên $IP\,{\text{//}}\,BC$.

 $IP \subset (IMP)$ nên \[BC\,\,{\text{//}}\,(IMP)\].

b) Ta có $\left\{ \begin{gathered}

M \in (\alpha ) \cap (ABC) \hfill \\

(ABC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\

\end{gathered} \right.$.

Khi đó $(\alpha ) \cap (ABC) = MQ\,{\text{//}}\,AC,\,\,Q \in BC$.

Mặt khác c$\left\{ \begin{gathered}

P \in (\alpha ) \cap (SAC) \hfill \\

(SAC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\

\end{gathered} \right.$

Suy ra $(\alpha ) \cap (SAC) = PN\,{\text{//}}\,AC,\,\,N \in SA$.

Vậy thiết diện cần tìm là hình bình hành $MNPQ$.

c) Chọn mặt phẳng $(SAC)$ chứa $NC$. Tìm giao tuyến của $(SAC)$$(SMQ)$:

Ta có $\left\{ \begin{gathered}

S \in (SAC) \cap (SMQ) \hfill \\

AC\,{\text{//}}\,MQ,\,\,AC \subset (SAC),\,\,MQ \subset (SMQ) \hfill \\

\end{gathered} \right.$.

Do đó \[(SAC) \cap (SMQ) = Sx\,{\text{//}}\,AC\,{\text{//}}\,MQ\].

Trong mặt phẳng $(SAC)$, gọi $J = CN \cap Sx$.

Ta có $\left\{ \begin{gathered}

J \in CN \hfill \\

J \in Sx \subset (SMQ) \hfill \\

\end{gathered} \right. \Rightarrow J = CN \cap (SMQ)$.

Vậy $J$ là giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu của mực nước là $9\,\,{\text{m}}$ thì $h = 9$.

Khi đó \[9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \]

\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \Leftrightarrow t = \frac{{6(k2\pi + \pi - 1)}}{\pi },\,\,k \in \mathbb{Z}\].

$0 \leqslant t < 24$ nên $0 \leqslant \frac{{6(k2\pi + \pi - 1)}}{\pi } < 24 \Leftrightarrow 0 < k \leqslant 1$.

\[k \in \mathbb{Z}\] nên \[k = 1 \Rightarrow t = \frac{{6(3\pi - 1)}}{\pi } \approx 16,09\,\,{\text{(m)}}\].

Vậy \[t \approx 16,09\,\,{\text{m}}\].

Câu 2

A. ${u_7} = {u_4}.\,{q^3}$.
B. ${u_7} = {u_4}.\,{q^4}$.
C. ${u_7} = {u_4}.\,{q^5}$.    

D. ${u_7} = {u_4}.\,{q^6}$.

Lời giải

Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. ${u_{n + 1}} = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^{2(n + 1) + 3}}$.

    B. ${u_{n + 1}} = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^{2(n - 1) + 3}}$.       

C. ${u_{n + 1}} = {\left( {\frac{n}{{n + 1}}} \right)^{2n + 3}}$.

D. ${u_{n + 1}} = {\left( {\frac{n}{{n + 1}}} \right)^{2n + 5}}$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. $\sin \alpha > 0$.
B. $\cos \alpha < 0$.    
C. $\tan \alpha > 0$.    

D. $\cot \alpha > 0$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. $x = \frac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}$.                             

B. $x = \frac{\pi }{6} + k2\pi ,\,\,k \in \mathbb{Z}$.

C. $x = \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}$.                             

D. $x = \frac{\pi }{6} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP