Câu hỏi:

12/07/2024 201

Cho hình chóp $S.ABC$, gọi $M,\,\,P$$I$ lần lượt là trung điểm của $AB,\,\,SC$$SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$

a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.

b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?

c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD, gọi M, P và I lần lượt là (ảnh 1)

a) Ta có $IP$ là đường trung bình của tam giác $SBC$ nên $IP\,{\text{//}}\,BC$.

 $IP \subset (IMP)$ nên \[BC\,\,{\text{//}}\,(IMP)\].

b) Ta có $\left\{ \begin{gathered}

M \in (\alpha ) \cap (ABC) \hfill \\

(ABC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\

\end{gathered} \right.$.

Khi đó $(\alpha ) \cap (ABC) = MQ\,{\text{//}}\,AC,\,\,Q \in BC$.

Mặt khác c$\left\{ \begin{gathered}

P \in (\alpha ) \cap (SAC) \hfill \\

(SAC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\

\end{gathered} \right.$

Suy ra $(\alpha ) \cap (SAC) = PN\,{\text{//}}\,AC,\,\,N \in SA$.

Vậy thiết diện cần tìm là hình bình hành $MNPQ$.

c) Chọn mặt phẳng $(SAC)$ chứa $NC$. Tìm giao tuyến của $(SAC)$$(SMQ)$:

Ta có $\left\{ \begin{gathered}

S \in (SAC) \cap (SMQ) \hfill \\

AC\,{\text{//}}\,MQ,\,\,AC \subset (SAC),\,\,MQ \subset (SMQ) \hfill \\

\end{gathered} \right.$.

Do đó \[(SAC) \cap (SMQ) = Sx\,{\text{//}}\,AC\,{\text{//}}\,MQ\].

Trong mặt phẳng $(SAC)$, gọi $J = CN \cap Sx$.

Ta có $\left\{ \begin{gathered}

J \in CN \hfill \\

J \in Sx \subset (SMQ) \hfill \\

\end{gathered} \right. \Rightarrow J = CN \cap (SMQ)$.

Vậy $J$ là giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ $Oxy,$ trên đường tròn lượng giác như hình vẽ bên dưới. Điểm nào trong bốn đáp án A, B, C, D biểu diễn cho góc lượng giác có số đo bằng $60^\circ ?$

Trong mặt phẳng tọa độ Oxy trên đường tròn lượng giác (ảnh 1)

Xem đáp án » 25/04/2024 4,756

Câu 2:

Cho cấp số nhân $\left( {{u_n}} \right)$${u_1} \ne 0$$q \ne 0$. Đẳng thức nào sau đây là đúng?

Xem đáp án » 25/04/2024 4,224

Câu 3:

Cho dãy số $\left( {{u_n}} \right)$, với ${u_n} = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^{2n + 3}}$. Tìm số hạng ${u_{n + 1}}$.

Xem đáp án » 25/04/2024 3,586

Câu 4:

Cho $\alpha $ thuộc góc phần phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

Xem đáp án » 25/04/2024 2,549

Câu 5:

Cho góc lượng giác $\left( {Oa,Ob} \right)$ có số đo là $50^\circ .$ Hỏi số đo của góc luọng giác nào trong bốn đáp án A, B, C, D bên dưới cũng có tia đầu là $Oa$ và tia cuối là $Ob?$

Xem đáp án » 11/07/2024 1,966

Câu 6:

Tất cả nghiệm của phương trình $\cot 2x = \cot \frac{\pi }{3}$

Xem đáp án » 25/04/2024 1,732

Câu 7:

Đổi số đo của góc $\alpha = - 45^\circ $ sang rađian.

Xem đáp án » 25/04/2024 1,049

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store