Câu hỏi:

13/07/2024 1,282

Cho hai hình vuông ABCD và MNDQ lần lượt có cạnh là 12 cm và 10 cm. Nói Q và B, gọi P là giao điểm của QB và AD. Tính diện tích hình tô đậm.

Cho hai hình vuông ABCD và MNDQ lần lượt có cạnh là 12 cm và 10 cm. Nói Q và B, gọi  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nối N với B và nối P với B.

Cho hai hình vuông ABCD và MNDQ lần lượt có cạnh là 12 cm và 10 cm. Nói Q và B, gọi  (ảnh 2)

Ta có: SNPB = SNPC (hai tam giác chung đáy NP, chiều cao kẻ từ đỉnh B bằng chiều cao kẻ từ đỉnh C xuống đáy NP).

Vậy phần diện tích tô đậm SNCPQ = SNPQ + SNPB

Ta có: AN = 12 – 10 = 2 (cm); QC = 10 +12 = 22 (cm)

Diện tích hình vuông ABCD là

SABCD = 12 × 12 = 144 (cm2)

Diện tích hình vuông MNDQ là SMNDQ = 10 × 10 = 100 (cm2)

Diện tích tam giác MNQ là SMNQ = 10 × 10 : 2 = 50 (cm2)

Diện tích tam giác ABN là SABN = 12 × 2 : 2 = 12 (cm2)

Diện tích tam giác BQC là SBQC = 22 × 12 : 2 = 132 (cm2)

Vậy phần diện tích tô đậm là

SABCD + SMNDQ – SMNQ – SABN – SQBC = 144 + 100 50 12 132 = 50 (cm2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi bán kính của hình tròn tâm O là r.

Ta có: r = OA = OB

Ta có r × r × 3,14 = 50,24

r × r = 50,24: 3,14

r × r = 16

Diện tích tam giác OAB là

SOAB = × OA × OB = × r × r = × 16 = 8 cm2

Vì SABCD = 4 × SOAB nên diện tích hình vuông ABCD là 8 × 4 = 32 cm2.

Lời giải

Trong 1 giờ cả hai vòi nước chảy được 1:8=18  (bể).

Giả sử vòi A chảy 5 giờ, thì vòi B cũng chảy cùng 5 giờ để hai vòi cùng chảy.

Do đó thời gian của vòi B chảy còn lại là 20 – 5 = 15 (giờ).

Khi mở hai vòi trong 5 giờ thì lượng nước đã đầy được 5×18=58  (bể)

Lượng nước còn lại để vòi B chảy tiếp là 158=38  (bể)

Vòi B chảy 15 giờ được 38  bể, vậy trong 1 giờ vòi B chảy được 38:15=140 (bể)

Thời gian vòi B chảy một mình để đầy bể là 1:140=40  (giờ)

Đáp số: 40 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP