Câu hỏi:

02/07/2024 106

Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do ABCDEF là lục giác đều nên 

 .

 AB = BC = CD = DE = EF = FA.

Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.

Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.

Xét ΔSAM và ΔMBN có:

(chứng minh trên);

AM = BN (chứng minh trên);

SA = MB (chứng minh trên).

Do đó ΔSAM = ΔMBN  (c.g.c).

Suy ra SM = MN (hai cạnh tương ứng).

Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM. (1)

Vì AS = AM (chứng minh trên) suy ra ΔASM cân tại A.

Suy ra  (tính chất tam giác cân).

Do đó  (tổng 3 góc trong của tam giác).

Tương tự ta thu được:

 ;

 ;

 ;

 ;

 .

Ta có 

Tương tự, ta được:  (2)

Từ (1) và (2), suy ra MNPQRS là đa giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Em hãy tìm một số hình phẳng đều trong thực tế.

Xem đáp án » 11/07/2024 256

Câu 2:

Trong mỗi đường gấp khúc khép kín nối các đỉnh của mỗi hình dưới đây, nhận xét về:

− độ dài các đoạn thẳng;

− góc hợp bởi hai đoạn thẳng liên tiếp.

Xem đáp án » 11/07/2024 196

Câu 3:

Một vòng quay may mắn có dạng hình đa giác đều 10 cạnh (Hình 9). Tìm các phép quay biến đa giác này thành chính nó.

Xem đáp án » 11/07/2024 185

Câu 4:

Tìm các hình phẳng có tính đều:

Trong tự nhiên

Xem đáp án » 11/07/2024 167

Câu 5:

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình 14).

Hãy chỉ ra các phép quay biến đa giác đều thành chính nó.

Xem đáp án » 02/07/2024 159

Câu 6:

Gọi tên đa giác đều trong mỗi hình sau và tìm các phép quay có thể biến mỗi hình dưới đây thành chính nó.

Xem đáp án » 11/07/2024 155

Câu 7:

Tìm phép quay biến hình ngũ giác đều tâm I thành chính nó (Hình 8).

Xem đáp án » 11/07/2024 127

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL