Giải SBT Toán 9 Chân trời sáng tạo Bài 3. Đa giác đều và phép quay có đáp án
27 người thi tuần này 4.6 177 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

⦁ Các điểm A1, A2, A3, …, A10 chia đường tròn thành 10 cung bằng nhau, mỗi cung có số đo bằng \(\frac{{360^\circ }}{{10}} = 36^\circ ,\) do dó \(\widehat {{A_1}O{A_2}} = \widehat {{A_2}O{A_3}} = ... = \widehat {{A_{10}}O{A_1}} = 36^\circ .\)
Xét ∆OA1A2 và ∆OA2A3 có:
OA1 = OA2; \(\widehat {{A_1}O{A_2}} = \widehat {{A_2}O{A_3}};\) OA2 = OA3
Do đó ∆OA1A2 = ∆OA2A3 (c.g.c).
Suy ra A1A2 = A2A3 (hai cạnh tương ứng).
Chứng minh tương tự, ta có 10 tam giác cân OA1A2, OA2A3,…, OA10A1 bằng nhau vì cùng có hai cạnh bằng R và góc ở đỉnh bằng 36°, suy ra A1A2 = A2A3 = … = A10A1 nên đa giác có các cạnh bằng nhau.
⦁ Xét ∆OA1A2 cân tại O (do OA1 = OA2) nên
\(\widehat {O{A_1}{A_2}} = \widehat {O{A_2}{A_1}} = \frac{{180^\circ - \widehat {{A_1}O{A_2}}}}{2} = \frac{{180^\circ - 36^\circ }}{2} = 72^\circ .\)
Tương tự, ta cũng có ∆OA2A3 cân tại O (do OA2 = OA3) nên
\[\widehat {O{A_2}{A_3}} = \widehat {O{A_3}{A_2}} = \frac{{180^\circ - \widehat {{A_2}O{A_3}}}}{2} = \frac{{180^\circ - 36^\circ }}{2} = 72^\circ .\]
Suy ra \(\widehat {{A_1}{A_2}{A_3}} = \widehat {O{A_2}{A_1}} + \widehat {O{A_2}{A_3}} = 72^\circ + 72^\circ = 144^\circ .\)
Do đó ta tính được mỗi góc của đa giác A1A2A3…A10 bằng 144°.
Vậy đa giác A1A2A3... A10 có các cạnh bằng nhau và các góc bằng nhau nên là một đa giác đều.
Lời giải
Các hình phẳng đều có trong Hình 10 cho ta hình ảnh của lục giác đều.
Tổng số đo mỗi góc của hình lục giác đều bằng tổng số đo của hai tứ giác và bằng 2.360° = 720°.
Mà các góc của lục giác đều có số đo bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]
Lời giải
Ta thấy hình con sao biển là hình phẳng đều tương tự ngũ giác đều tâm O.
Các phép quay biến hình con sao biển thành chính nó là phép quay 72°, 144°, 216°, 288° hoặc 360° tâm O cùng chiều hoặc ngược chiều kim đồng hồ.
Lời giải

Gọi O là tâm đối xứng, AB là cạnh của ngũ giác đều. Kẻ OH ⊥ AB tại H.
Vì ngũ giác đã cho là ngũ giác đều nên nội tiếp đường tròn (O; OA) và các đỉnh của ngũ giác đều chia đường tròn thành 5 cung bằng nhau, do đó \(\widehat {AOB} = \frac{{360^\circ }}{5} = 72^\circ .\)
Xét ∆OAB cân tại O (do OA = OB) nên đường cao OH đồng thời là đường phân giác, đường trung tuyến của tam giác.
Suy ra \(\widehat {AOH} = \frac{{\widehat {AOB}}}{2} = 36^\circ \) và H là trung điểm của AB nên \(AH = \frac{{AB}}{2} = \frac{{280}}{2} = 140\;\) (m).
Xét ∆OAH vuông tại H, ta có:
OH = AH . cot 36° = 140 . cot 36° ≈ 192,7 (m).
Lời giải

⦁ Vì ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường. Do đó OA = OB = OC = OD và AC ⊥ BD.
Vì ABCD là hình vuông ABCD nên nó nội tiếp đường tròn (O; R) với bán kính là \(R = OA = OB = OC = OD = \frac{{a\sqrt 2 }}{2}.\)
⦁ Trong tam giác AOD vuông cân tại O (do OA = OD và \(\widehat {AOD} = 90^\circ \)), vẽ đường cao OP, khi đó OP cũng đồng thời là đường trung tuyến của tam giác AOD.
Do đó \(OP = \frac{{AD}}{2} = \frac{a}{2}\) (tính chất đường trung tuyến ứng với cạnh huyền).
Tương tự, ta có điểm O cách đều các cạnh của hình vuông một khoảng \(\frac{a}{2}.\)
Do đó, đường tròn (O; r) với \(r = \frac{a}{2}\) tiếp xúc với các cạnh của hình vuông ABCD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.