Giải SBT Toán 9 Chân trời sáng tạo Bài 1. Đường tròn có đáp án
25 người thi tuần này 4.6 149 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Gọi O là giao điểm của hai đường chéo của hình vuông ABCD, khi đó O là trung điểm của AC và BD, nên OA = OB = OC = OD = \(\frac{1}{2}AC = \frac{1}{2}BD.\)
Áp dụng định lí Pythagore cho tam giác ABD vuông tại A ta có:
\[BD = \sqrt {A{D^2} + A{B^2}} = \sqrt {{{16}^2} + {{16}^2}} = \sqrt {2 \cdot {{16}^2}} = 16\sqrt 2 \,\,{\rm{(cm}}).\]
Do đó \[OA = OB = OC = OD = \frac{1}{2} \cdot 16\sqrt 2 = 8\sqrt 2 \,\,{\rm{(cm}}).\]
Suy ra bốn đỉnh của hình vuông ABCD đều nằm trên đường tròn \(\left( {O;\,\,8\sqrt 2 \;{\rm{cm}}} \right).\)
Lời giải

a) Gọi O là trung điểm của BC. Khi đó, \(OB = OC = \frac{1}{2}BC.\)
Do BH và CK là đường cao tam giác ABC nên BH ⊥ AC tại H; CK ⊥ AB tại K
Suy ra tam giác BHC vuông tại H; tam giác BKC vuông tại K
Xét tam giác BKC vuông tại H có KO là đường trung tuyến ứng với cạnh huyền BC nên \(KO = \frac{1}{2}BC.\)
Chứng minh tương tự đối với ∆BKC vuông tại K, ta có \(HO = \frac{1}{2}BC.\)
Suy ra \[KO = OH = OB = OC = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5\,\,{\rm{(cm}}).\]
Tứ giác BKHC có: OB = OK = OH = OC = 5 cm nên bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R) với R = 5 cm.
b) Xét ∆ABC cân tại A (do AB = AC) có AO là đường trung tuyến nên đồng thời là đường cao, suy ra ∆ABO vuông tại O.
Áp dụng định lí Pythagore cho tam giác AOB vuông tại O, ta có:
\(OA = \sqrt {B{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = \sqrt {144} = 12\,\,({\rm{cm}}).\)
Vì 12 > 5 nên OA > R, suy ra điểm A nằm ngoài đường tròn (O; R).
Lời giải
a) Ta có: 7 < 29 – 4 nên OO’ < R – R’, suy ra đường tròn (O; R) đựng đường tròn (O’; R’).
b) Ta có: 21 = 44 – 23 nên OO’ = R – R’, suy ra hai đường tròn (O; R) và (O’; R’) tiếp xúc trong.
c) Ta có: 15 = 7 + 8 nên OO’ = R + R’, suy ra hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài.
d) Ta có: 24 – 20 < 6 < 24 + 20 nên R – R’ < OO’ < R + R’, suy ra hai đường tròn (O; R) và (O’; R’) cắt nhau.
Lời giải

a) Gọi I, J lần lượt là giao điểm của MN với AA’, BB’.
Do A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN nên AA’ ⊥ MN tại I, IA = IA’ và BB’ ⊥ MN tại J, JB = JB’.
Xét ∆AIJ và ∆A’IJ, có:
\(\widehat {AIJ} = \widehat {A'IJ} = 90^\circ ,\) IA = IA’, cạnh IJ chung
Do đó ∆AIJ = ∆A’IJ (hai cạnh góc vuông)
Suy ra AJ = A’J và \[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] (các cặp cạnh và góc tương ứng).
Ta có: \[\widehat {{\rm{AJI}}} + \widehat {BJA} = 90^\circ ;\,\,\widehat {A'JI} + \widehat {A'JB'} = 90^\circ \] và \[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] nên \[\widehat {BJA} = \widehat {A'JB'}.\]
Xét ∆ABJ và ∆A’B’J, có:
JB = JB’, \[\widehat {BJA} = \widehat {A'JB'},\] AJ = A’J
Do đó ∆ABJ = ∆A’B’J (c.g.c), suy ra \(\widehat B = \widehat {B'}.\)
Ta có AA’ // BB’ (cùng vuông góc với MN) nên ABB’A’ là hình thang, lại có \(\widehat B = \widehat {B'}\) nên ABB’A’ là hình thang cân.
b) Ta có MN là trục đối xứng của đường tròn (O; 8 cm), A, B đã thuộc đường tròn (O; 8 cm) suy ra A’, B’ là hai điểm đối xứng với A, B qua MN nên cũng thuộc đường tròn (O; 8 cm), suy ra bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Lời giải

a) Ta có đường kính AB là trục đối xứng của đường tròn (O)
Suy ra \(MC = MD = \frac{{CD}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \;({\rm{cm}}).\)
Tam giác ABC có CO là đường trung tuyến và \(CO = \frac{1}{2}AB,\) suy ra ABC là tam giác vuông tại C.
Do \[\widehat {CAM} + \widehat {CBM} = 90^\circ ;\,\,\widehat {CAM} + \widehat {ACM} = 90^\circ \] nên \[\widehat {CBM} = \widehat {ACM}.\]
Xét ∆CMB và ∆AMC có:
\[\widehat {AMC} = \widehat {CMB} = 90^\circ \] và \[\widehat {CBM} = \widehat {ACM}\]
Do đó ∆CMB ᔕ ∆AMC (g.g).
Suy ra \(\frac{{MC}}{{MA}} = \frac{{MB}}{{MC}},\) nên \(MB = \frac{{M{C^2}}}{{MA}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{1} = 3\;({\rm{cm}}).\)
Gọi R là bán kính đường tròn đường kính AB, khi đó AB = 2R.
Ta có AB = MA + MB = 1 + 3 = 4 = 2R, suy ra R = 2 cm.
b) Xét tam giác AMC vuông tại M, ta có:
\(\tan \widehat {CAB} = \tan \widehat {CAM} = \frac{{MC}}{{MA}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 ,\) suy ra \(\widehat {CAB} \approx 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đánh giá
50%
40%
0%
0%
0%