Giải SBT Toán 9 Chân trời sáng tạo Bài 3. Hình cầu có đáp án
24 người thi tuần này 4.6 144 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
⦁ Hình 6a:
Diện tích của mặt cầu là:
S = 4πR2 = 4.π.62 = 144π (m2).
Thể tích của hình cầu là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3} \cdot \pi \cdot {6^3} = 288\pi \) (m3).
⦁ Hình 6b:
Bán kính của hình cầu là: 14 : 2 = 7 (dm).
Diện tích của mặt cầu là:
S = 4πR2 = 4.π.72 = 196π (cm2).
Thể tích của hình cầu là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3} \cdot \pi \cdot {7^3} = \frac{{1\,\,372\pi }}{3}\) (cm3).
⦁ Hình 6c:
Bán kính của hình cầu là: 26 : 2 = 13 (dm).
Diện tích của mặt cầu là:
S = 4πR2 = 4.π.132 = 676π (dm2).
Thể tích của hình cầu là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3} \cdot \pi \cdot {13^3} = \frac{{8\,\,788\pi }}{3}\) (dm3).
Lời giải
Khi cắt hình cầu bởi một mặt phẳng thì phần chung của mặt cầu và mặt phẳng là một hình tròn.
Do đó, đường viền của mặt nước và trái bóng có dạng đường tròn.
Lời giải
a) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \(R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 450}}{{4\pi }}}} = \sqrt[3]{{\frac{{675}}{{2\pi }}}}\) (m);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{675}}{{2\pi }}}}} \right)^2} \approx 284\) (m2).
b) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \(R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 250}}{{4\pi }}}} = \sqrt[3]{{\frac{{375}}{{2\pi }}}}\) (dm);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{375}}{{2\pi }}}}} \right)^2} \approx 192\) (dm2).
c) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \[R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 62}}{{4\pi }}}} = \sqrt[3]{{\frac{{93}}{{2\pi }}}}\] (cm);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{93}}{{2\pi }}}}} \right)^2} \approx 76\) (cm2).
Lời giải
a) Ta có: S = 4πR2, suy ra \(R = \sqrt {\frac{S}{{4\pi }}} = \sqrt {\frac{{170}}{{4\pi }}} \) (m).
Khi đó, \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\sqrt {\frac{{170}}{{4\pi }}} } \right)^3} \approx 208\) (m3).
b) Ta có: S = 4πR2, suy ra \(R = \sqrt {\frac{S}{{4\pi }}} = \sqrt {\frac{{190}}{{4\pi }}} \) (dm).
Khi đó, \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\sqrt {\frac{{190}}{{4\pi }}} } \right)^3} \approx 246\) (dm3).
c) Ta có: S = 4πR2, suy ra \(R = \sqrt {\frac{S}{{4\pi }}} = \sqrt {\frac{{1\,\,973}}{{4\pi }}} \) (cm).
Khi đó, \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\sqrt {\frac{{1\,\,973}}{{4\pi }}} } \right)^3} \approx 8\,\,241\) (cm3).
Lời giải
Thể tích của viên bi đặc đó là: \(\frac{4}{3} \cdot \pi \cdot 0,{8^3} = \frac{{256\pi }}{{375}}\) (cm3).
Khối lượng của một viên bi là:
\(\frac{{256\pi }}{{375}} \cdot 7,85 = \frac{{10\,\,048\pi }}{{1\,\,875}}\) (g).
Ta có: 2 kg = 2 000 (g) và \(2\,\,000:\frac{{10\,\,048\pi }}{{1\,\,875}} \approx 118,796.\)
Vậy với 2 kg thép thì chế tạo được 118 viên bi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
29 Đánh giá
50%
40%
0%
0%
0%