Câu hỏi:
28/08/2024 2,778
Một vật thể đặc gồm một phần dạng nửa hình cầu và một phần dạng hình nón với các số đo như Hình 8. Tính thể tích và diện tích bề mặt của vật thể này (kết quả làm tròn đến hàng đơn vị của xăngtimét khối, xăngtimét vuông).
Một vật thể đặc gồm một phần dạng nửa hình cầu và một phần dạng hình nón với các số đo như Hình 8. Tính thể tích và diện tích bề mặt của vật thể này (kết quả làm tròn đến hàng đơn vị của xăngtimét khối, xăngtimét vuông).

Quảng cáo
Trả lời:
Chiều cao của hình nón là:
\(h = \sqrt {{l^2} - {r^2}} = \sqrt {{{35}^2} - {{21}^2}} = \sqrt {784} = 28\) (cm).
⦁ Thể tích của hình nón là:
\({V_1} = \frac{1}{3} \cdot \pi \cdot {21^2} \cdot 28 = 4\,\,116\pi \) (cm3).
Thể tích của nửa hình cầu là:
\({V_2} = \frac{1}{2} \cdot \left( {\frac{4}{3} \cdot \pi \cdot {{21}^3}} \right) = 6\,\,174\pi \) (cm3).
Thể tích của vật thể là:
V = V1 + V2 = 4 116π + 6 174π = 10 290π ≈ 32 327 (cm3).
⦁ Diện tích xung quanh của hình nón là:
S1 = π.21.35 = 735π (cm2).
Diện tích bề mặt của nửa hình cầu là:
\({S_2} = \frac{1}{2} \cdot \left( {4\pi \cdot {{21}^2}} \right) = 882\pi \) (cm2).
Diện tích bề mặt của vật thể là:
S = S1 + S2 = 735π + 882π = 1 617π ≈ 5 080 (cm2).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích của viên bi đặc đó là: \(\frac{4}{3} \cdot \pi \cdot 0,{8^3} = \frac{{256\pi }}{{375}}\) (cm3).
Khối lượng của một viên bi là:
\(\frac{{256\pi }}{{375}} \cdot 7,85 = \frac{{10\,\,048\pi }}{{1\,\,875}}\) (g).
Ta có: 2 kg = 2 000 (g) và \(2\,\,000:\frac{{10\,\,048\pi }}{{1\,\,875}} \approx 118,796.\)
Vậy với 2 kg thép thì chế tạo được 118 viên bi.
Lời giải
a) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \(R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 450}}{{4\pi }}}} = \sqrt[3]{{\frac{{675}}{{2\pi }}}}\) (m);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{675}}{{2\pi }}}}} \right)^2} \approx 284\) (m2).
b) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \(R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 250}}{{4\pi }}}} = \sqrt[3]{{\frac{{375}}{{2\pi }}}}\) (dm);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{375}}{{2\pi }}}}} \right)^2} \approx 192\) (dm2).
c) Ta có: \(V = \frac{4}{3}\pi {R^3},\) suy ra \[R = \sqrt[3]{{\frac{{3V}}{{4\pi }}}} = \sqrt[3]{{\frac{{3 \cdot 62}}{{4\pi }}}} = \sqrt[3]{{\frac{{93}}{{2\pi }}}}\] (cm);
Khi đó, \(S = 4\pi {R^2} = 4 \cdot \pi \cdot {\left( {\sqrt[3]{{\frac{{93}}{{2\pi }}}}} \right)^2} \approx 76\) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.