Câu hỏi:
28/08/2024 762Chứng minh bốn đỉnh của hình vuông ABCD có cạnh bằng 16 cm đều nằm trên một đường tròn. Tính bán kính của đường tròn này.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi O là giao điểm của hai đường chéo của hình vuông ABCD, khi đó O là trung điểm của AC và BD, nên OA = OB = OC = OD = \(\frac{1}{2}AC = \frac{1}{2}BD.\)
Áp dụng định lí Pythagore cho tam giác ABD vuông tại A ta có:
\[BD = \sqrt {A{D^2} + A{B^2}} = \sqrt {{{16}^2} + {{16}^2}} = \sqrt {2 \cdot {{16}^2}} = 16\sqrt 2 \,\,{\rm{(cm}}).\]
Do đó \[OA = OB = OC = OD = \frac{1}{2} \cdot 16\sqrt 2 = 8\sqrt 2 \,\,{\rm{(cm}}).\]
Suy ra bốn đỉnh của hình vuông ABCD đều nằm trên đường tròn \(\left( {O;\,\,8\sqrt 2 \;{\rm{cm}}} \right).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = AC = 13 cm, BC = 10 cm và có BH, CK là hai đường cao. Chứng minh:
a) Bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R).
b) Điểm A nằm ngoài đường tròn (O; R).
Câu 3:
Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN. Chứng minh:
a) ABB’A’ là hình thang cân.
b) Bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Câu 4:
Cho hai điểm A, B trên đường tròn (O; R). Cho biết AB = 9 cm và khoảng cách từ O đến đường thẳng AB là \(OH = \frac{R}{2}.\)
Tính:
a) Số đo \(\widehat {OBH}.\)
b) Bán kính R của đường tròn.
Câu 5:
Xác định vị trí tương đối của hai đường tròn (O; R) và (O’; R’) trong mỗi trường hợp sau:
a) OO’ = 7, R = 29, R’ = 4;
b) OO’ = 21, R = 44, R’ = 23;
c) OO’ = 15, R = 7, R’ = 8;
d) OO’ = 6, R = 24, R’ = 20.
Câu 6:
Cho hình vuông ABCD có cạnh bằng 4 cm.
a) Vẽ các đường tròn tâm A, B, C, D bán kính 2 cm.
b) Nêu nhận xét về vị trí giữa các cặp đường tròn (A; 2 cm) và (B; 2 cm), (A; 2 cm) và (C; 2 cm).
về câu hỏi!