Câu hỏi:

28/08/2024 1,576 Lưu

Chứng minh bốn đỉnh của hình vuông ABCD có cạnh bằng 16 cm đều nằm trên một đường tròn. Tính bán kính của đường tròn này.

Chứng minh bốn đỉnh của hình vuông ABCD có cạnh bằng 16 cm đều nằm trên một đường tròn. Tính bán kính của đường tròn này.  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi O là giao điểm của hai đường chéo của hình vuông ABCD, khi đó O là trung điểm của AC và BD, nên OA = OB = OC = OD = \(\frac{1}{2}AC = \frac{1}{2}BD.\)

Áp dụng định lí Pythagore cho tam giác ABD vuông tại A ta có:

\[BD = \sqrt {A{D^2} + A{B^2}} = \sqrt {{{16}^2} + {{16}^2}} = \sqrt {2 \cdot {{16}^2}} = 16\sqrt 2 \,\,{\rm{(cm}}).\]

Do đó \[OA = OB = OC = OD = \frac{1}{2} \cdot 16\sqrt 2 = 8\sqrt 2 \,\,{\rm{(cm}}).\]

Suy ra bốn đỉnh của hình vuông ABCD đều nằm trên đường tròn \(\left( {O;\,\,8\sqrt 2 \;{\rm{cm}}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC = 13 cm, BC = 10 cm và có BH, CK là hai đường cao. Chứng minh: a) Bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R). b) Điểm A nằm ngoài đường tròn (O; R). (ảnh 1)

a) Gọi O là trung điểm của BC. Khi đó, \(OB = OC = \frac{1}{2}BC.\)

Do BH và CK là đường cao tam giác ABC nên BH AC tại H; CK AB tại K

Suy ra tam giác BHC vuông tại H; tam giác BKC vuông tại K

Xét tam giác BKC vuông tại H KO là đường trung tuyến ứng với cạnh huyền BC nên \(KO = \frac{1}{2}BC.\)

Chứng minh tương tự đối với ∆BKC vuông tại K, ta có \(HO = \frac{1}{2}BC.\)

Suy ra \[KO = OH = OB = OC = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5\,\,{\rm{(cm}}).\]

Tứ giác BKHC có: OB = OK = OH = OC = 5 cm nên bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R) với R = 5 cm.

b) Xét ∆ABC cân tại A (do AB = AC) có AO là đường trung tuyến nên đồng thời là đường cao, suy ra ∆ABO vuông tại O.

Áp dụng định lí Pythagore cho tam giác AOB vuông tại O, ta có:

\(OA = \sqrt {B{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = \sqrt {144} = 12\,\,({\rm{cm}}).\)

Vì 12 > 5 nên OA > R, suy ra điểm A nằm ngoài đường tròn (O; R).

Câu 2

Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, \(CD = 2\sqrt 3 \;{\rm{cm}}.\) Tính:

a) Bán kính đường tròn (O).

b) Số đo \(\widehat {CAB}.\)

Lời giải

Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, \CD = 2can3 cm Tính: a) Bán kính đường tròn (O). b) Số đo (ảnh 1)

a) Ta có đường kính AB là trục đối xứng của đường tròn (O)

Suy ra \(MC = MD = \frac{{CD}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \;({\rm{cm}}).\)

Tam giác ABC có CO là đường trung tuyến và \(CO = \frac{1}{2}AB,\) suy ra ABC là tam giác vuông tại C.

Do \[\widehat {CAM} + \widehat {CBM} = 90^\circ ;\,\,\widehat {CAM} + \widehat {ACM} = 90^\circ \] nên \[\widehat {CBM} = \widehat {ACM}.\]

Xét ∆CMB và ∆AMC có:

\[\widehat {AMC} = \widehat {CMB} = 90^\circ \] và \[\widehat {CBM} = \widehat {ACM}\]

Do đó ∆CMB ᔕ ∆AMC (g.g).

Suy ra \(\frac{{MC}}{{MA}} = \frac{{MB}}{{MC}},\) nên \(MB = \frac{{M{C^2}}}{{MA}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{1} = 3\;({\rm{cm}}).\)

Gọi R là bán kính đường tròn đường kính AB, khi đó AB = 2R.

Ta có AB = MA + MB = 1 + 3 = 4 = 2R, suy ra R = 2 cm.

b) Xét tam giác AMC vuông tại M, ta có:

\(\tan \widehat {CAB} = \tan \widehat {CAM} = \frac{{MC}}{{MA}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 ,\) suy ra \(\widehat {CAB} \approx 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP