Câu hỏi:

28/08/2024 1,453

Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN. Chứng minh:

a) ABB’A’ là hình thang cân.

b) Bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN (ảnh 1)

a) Gọi I, J lần lượt là giao điểm của MN với AA’, BB’.

Do A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN nên AA’ MN tại I, IA = IA’ và BB’ MN tại J, JB = JB’.

Xét ∆AIJ và ∆A’IJ, có:

\(\widehat {AIJ} = \widehat {A'IJ} = 90^\circ ,\) IA = IA’, cạnh IJ chung

Do đó ∆AIJ  = ∆A’IJ (hai cạnh góc vuông)

Suy ra AJ = A’J\[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] (các cặp cạnh và góc tương ứng).

Ta có: \[\widehat {{\rm{AJI}}} + \widehat {BJA} = 90^\circ ;\,\,\widehat {A'JI} + \widehat {A'JB'} = 90^\circ \]\[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] nên \[\widehat {BJA} = \widehat {A'JB'}.\]

Xét ∆ABJ và ∆A’B’J, có:

JB = JB’, \[\widehat {BJA} = \widehat {A'JB'},\] AJ = A’J

Do đó ∆ABJ = ∆A’B’J (c.g.c), suy ra \(\widehat B = \widehat {B'}.\)

Ta có AA’ // BB’ (cùng vuông góc với MN) nên ABB’A’ là hình thang, lại có \(\widehat B = \widehat {B'}\) nên ABB’A’ là hình thang cân.

b) Ta có MN là trục đối xứng của đường tròn (O; 8 cm), A, B đã thuộc đường tròn (O; 8 cm) suy ra A’, B’ là hai điểm đối xứng với A, B qua MN nên cũng thuộc đường tròn (O; 8 cm), suy ra bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC = 13 cm, BC = 10 cm và có BH, CK là hai đường cao. Chứng minh: a) Bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R). b) Điểm A nằm ngoài đường tròn (O; R). (ảnh 1)

a) Gọi O là trung điểm của BC. Khi đó, \(OB = OC = \frac{1}{2}BC.\)

Do BH và CK là đường cao tam giác ABC nên BH AC tại H; CK AB tại K

Suy ra tam giác BHC vuông tại H; tam giác BKC vuông tại K

Xét tam giác BKC vuông tại H KO là đường trung tuyến ứng với cạnh huyền BC nên \(KO = \frac{1}{2}BC.\)

Chứng minh tương tự đối với ∆BKC vuông tại K, ta có \(HO = \frac{1}{2}BC.\)

Suy ra \[KO = OH = OB = OC = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5\,\,{\rm{(cm}}).\]

Tứ giác BKHC có: OB = OK = OH = OC = 5 cm nên bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R) với R = 5 cm.

b) Xét ∆ABC cân tại A (do AB = AC) có AO là đường trung tuyến nên đồng thời là đường cao, suy ra ∆ABO vuông tại O.

Áp dụng định lí Pythagore cho tam giác AOB vuông tại O, ta có:

\(OA = \sqrt {B{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = \sqrt {144} = 12\,\,({\rm{cm}}).\)

Vì 12 > 5 nên OA > R, suy ra điểm A nằm ngoài đường tròn (O; R).

Câu 2

Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, \(CD = 2\sqrt 3 \;{\rm{cm}}.\) Tính:

a) Bán kính đường tròn (O).

b) Số đo \(\widehat {CAB}.\)

Lời giải

Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, \CD = 2can3 cm Tính: a) Bán kính đường tròn (O). b) Số đo (ảnh 1)

a) Ta có đường kính AB là trục đối xứng của đường tròn (O)

Suy ra \(MC = MD = \frac{{CD}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \;({\rm{cm}}).\)

Tam giác ABC có CO là đường trung tuyến và \(CO = \frac{1}{2}AB,\) suy ra ABC là tam giác vuông tại C.

Do \[\widehat {CAM} + \widehat {CBM} = 90^\circ ;\,\,\widehat {CAM} + \widehat {ACM} = 90^\circ \] nên \[\widehat {CBM} = \widehat {ACM}.\]

Xét ∆CMB và ∆AMC có:

\[\widehat {AMC} = \widehat {CMB} = 90^\circ \] và \[\widehat {CBM} = \widehat {ACM}\]

Do đó ∆CMB ᔕ ∆AMC (g.g).

Suy ra \(\frac{{MC}}{{MA}} = \frac{{MB}}{{MC}},\) nên \(MB = \frac{{M{C^2}}}{{MA}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{1} = 3\;({\rm{cm}}).\)

Gọi R là bán kính đường tròn đường kính AB, khi đó AB = 2R.

Ta có AB = MA + MB = 1 + 3 = 4 = 2R, suy ra R = 2 cm.

b) Xét tam giác AMC vuông tại M, ta có:

\(\tan \widehat {CAB} = \tan \widehat {CAM} = \frac{{MC}}{{MA}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 ,\) suy ra \(\widehat {CAB} \approx 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay