Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN. Chứng minh:
a) ABB’A’ là hình thang cân.
b) Bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN. Chứng minh:
a) ABB’A’ là hình thang cân.
b) Bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Quảng cáo
Trả lời:

a) Gọi I, J lần lượt là giao điểm của MN với AA’, BB’.
Do A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN nên AA’ ⊥ MN tại I, IA = IA’ và BB’ ⊥ MN tại J, JB = JB’.
Xét ∆AIJ và ∆A’IJ, có:
\(\widehat {AIJ} = \widehat {A'IJ} = 90^\circ ,\) IA = IA’, cạnh IJ chung
Do đó ∆AIJ = ∆A’IJ (hai cạnh góc vuông)
Suy ra AJ = A’J và \[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] (các cặp cạnh và góc tương ứng).
Ta có: \[\widehat {{\rm{AJI}}} + \widehat {BJA} = 90^\circ ;\,\,\widehat {A'JI} + \widehat {A'JB'} = 90^\circ \] và \[\widehat {{\rm{AJI}}} = \widehat {A'JI}\] nên \[\widehat {BJA} = \widehat {A'JB'}.\]
Xét ∆ABJ và ∆A’B’J, có:
JB = JB’, \[\widehat {BJA} = \widehat {A'JB'},\] AJ = A’J
Do đó ∆ABJ = ∆A’B’J (c.g.c), suy ra \(\widehat B = \widehat {B'}.\)
Ta có AA’ // BB’ (cùng vuông góc với MN) nên ABB’A’ là hình thang, lại có \(\widehat B = \widehat {B'}\) nên ABB’A’ là hình thang cân.
b) Ta có MN là trục đối xứng của đường tròn (O; 8 cm), A, B đã thuộc đường tròn (O; 8 cm) suy ra A’, B’ là hai điểm đối xứng với A, B qua MN nên cũng thuộc đường tròn (O; 8 cm), suy ra bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi O là trung điểm của BC. Khi đó, \(OB = OC = \frac{1}{2}BC.\)
Do BH và CK là đường cao tam giác ABC nên BH ⊥ AC tại H; CK ⊥ AB tại K
Suy ra tam giác BHC vuông tại H; tam giác BKC vuông tại K
Xét tam giác BKC vuông tại H có KO là đường trung tuyến ứng với cạnh huyền BC nên \(KO = \frac{1}{2}BC.\)
Chứng minh tương tự đối với ∆BKC vuông tại K, ta có \(HO = \frac{1}{2}BC.\)
Suy ra \[KO = OH = OB = OC = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5\,\,{\rm{(cm}}).\]
Tứ giác BKHC có: OB = OK = OH = OC = 5 cm nên bốn điểm B, C, H, K cùng nằm trên đường tròn (O; R) với R = 5 cm.
b) Xét ∆ABC cân tại A (do AB = AC) có AO là đường trung tuyến nên đồng thời là đường cao, suy ra ∆ABO vuông tại O.
Áp dụng định lí Pythagore cho tam giác AOB vuông tại O, ta có:
\(OA = \sqrt {B{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = \sqrt {144} = 12\,\,({\rm{cm}}).\)
Vì 12 > 5 nên OA > R, suy ra điểm A nằm ngoài đường tròn (O; R).
Lời giải

a) Ta có đường kính AB là trục đối xứng của đường tròn (O)
Suy ra \(MC = MD = \frac{{CD}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \;({\rm{cm}}).\)
Tam giác ABC có CO là đường trung tuyến và \(CO = \frac{1}{2}AB,\) suy ra ABC là tam giác vuông tại C.
Do \[\widehat {CAM} + \widehat {CBM} = 90^\circ ;\,\,\widehat {CAM} + \widehat {ACM} = 90^\circ \] nên \[\widehat {CBM} = \widehat {ACM}.\]
Xét ∆CMB và ∆AMC có:
\[\widehat {AMC} = \widehat {CMB} = 90^\circ \] và \[\widehat {CBM} = \widehat {ACM}\]
Do đó ∆CMB ᔕ ∆AMC (g.g).
Suy ra \(\frac{{MC}}{{MA}} = \frac{{MB}}{{MC}},\) nên \(MB = \frac{{M{C^2}}}{{MA}} = \frac{{{{\left( {\sqrt 3 } \right)}^2}}}{1} = 3\;({\rm{cm}}).\)
Gọi R là bán kính đường tròn đường kính AB, khi đó AB = 2R.
Ta có AB = MA + MB = 1 + 3 = 4 = 2R, suy ra R = 2 cm.
b) Xét tam giác AMC vuông tại M, ta có:
\(\tan \widehat {CAB} = \tan \widehat {CAM} = \frac{{MC}}{{MA}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 ,\) suy ra \(\widehat {CAB} \approx 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.