Câu hỏi:
28/08/2024 133Cho hình vuông ABCD cạnh a có O là giao điểm của hai đường chéo. Chứng minh có đường tròn (O; R) đi qua các đỉnh của hình vuông và có đường tròn (O; r) tiếp xúc với các cạnh của hình vuông. Tính theo a bán kính R và r.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
⦁ Vì ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường. Do đó OA = OB = OC = OD và AC ⊥ BD.
Vì ABCD là hình vuông ABCD nên nó nội tiếp đường tròn (O; R) với bán kính là \(R = OA = OB = OC = OD = \frac{{a\sqrt 2 }}{2}.\)
⦁ Trong tam giác AOD vuông cân tại O (do OA = OD và \(\widehat {AOD} = 90^\circ \)), vẽ đường cao OP, khi đó OP cũng đồng thời là đường trung tuyến của tam giác AOD.
Do đó \(OP = \frac{{AD}}{2} = \frac{a}{2}\) (tính chất đường trung tuyến ứng với cạnh huyền).
Tương tự, ta có điểm O cách đều các cạnh của hình vuông một khoảng \(\frac{a}{2}.\)
Do đó, đường tròn (O; r) với \(r = \frac{a}{2}\) tiếp xúc với các cạnh của hình vuông ABCD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ngũ giác đài hay Lầu năm góc là trụ sở Bộ Quốc phòng Hoa Kỳ có dạng hình ngũ giác đều với độ dài cạnh khoảng 280 m như Hình 12. Tính khoảng cách từ tâm đối xứng đến một cạnh của ngũ giác đều này (kết quả làm tròn đến hàng phần mười của mét).
(Nguồn: https://khoahoc. tv/ ngu-giac-dai-lau-nam-goc-6515)
Câu 2:
Hình ảnh những bông hoa dưới đây là hình phẳng đều tương tự các đa giác đều nào?
Câu 3:
Cho đường tròn (O; R). Lấy các điểm A1, A2, A2, …, A10 trên đường tròn (O; R) sao cho các điểm này chia đường tròn thành 10 cung có số đo bằng nhau. Chứng minh đa giác A1A2 A3…A10 là một đa giác đều.
Câu 4:
Các hình phẳng đều có trong Hình 10 cho ta hình ảnh của đa giác đều nào? Tính số đo góc của đa giác đều đó.
Câu 5:
Dựa trên gợi ý của hình ngũ giác đều (Hình 11a), tìm phép quay biến hình con sao biển thành chính nó (Hình 11b).
về câu hỏi!