Câu hỏi:

12/07/2024 242 Lưu

Trong bài toán ở phần mở đầu, gọi x, y lần lượt là số lít nước sinh tố loại thứ nhất và loại thứ hai mà công ty dự định sản xuất.

Viết các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số lít nước anh đào có trong x lít nước sinh tố loại thứ nhất và y lít nước sinh tố loại thứ hai là 0,7x + 0,4y (lít).

Số lít nước cam có trong x lít nước sinh tố loại thứ nhất và y lít nước sinh tố loại thứ hai là 0,3x + 0,6y (lít).

Vì lượng nguyên liệu sử dụng không vượt quá lượng dự trữ nên ta có hệ bất phương trình:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x và y lần lượt là số sản phẩm loại A và loại B người đó cần sơn (x ℕ, y ℕ).

Số tiền lãi người đó thu được là: T = 10x + 8y (triệu đồng).

Số kg sơn xanh người đó cần dùng là: 6x + 2y ≤ 12 hay 3x + y ≤ 6;

Số kg sơn vàng người đó cần dùng là: 2x + 2y ≤ 8 hay x + y ≤ 4.

Vì vậy, yêu cầu của người đó có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):  

Ta cần tìm giá trị lớn nhất của biểu thức T = 10x + 8y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 4), B(1; 3), C(2; 0) (hình vẽ).

Bước 2. Tính giá trị của biểu thức T(x; y)  = 10x + 8y tại các đỉnh của tứ giác này:

T(0; 0) = 0; T(0; 4) = 32; T(1; 3) = 34; T(2; 0) = 20.

Bước 3. Ta đã biết biểu thức T = 10x + 8y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, ta được giá trị lớn nhất cần tìm là T(1; 3) = 34.

Bước 4. Vì 1 và 3 đều là các số tự nhiên nên cặp số (1; 3) là nghiệm của bài toán (I).

Vậy để số tiền lãi thu được là lớn nhất thì cần sơn 1 sản phẩm loại A và 3 sản phẩm loại B.

Lời giải

Gọi bác Dũng cần mua x cổ phiếu A và y cổ phiếu B (x ℕ, y ℕ).

Khi đó, số tiền bác Dũng cần chi ra là: 30 000x + 40 000y (đồng).

Vì số tiền bác Dũng đầu tư không quá 1,2 tỉ đồng nên ta có:

30 000x + 40 000y ≤ 1 200 000 000 hay 3x + 4y ≤ 120 000.

Vì số lượng cổ phiếu B được mua không quá 10 000 cổ phiếu nên y ≤ 10 000.

Một cổ phiếu A sẽ nhận được số tiền chi trả cổ tức là: 5% . 30 000 = 1 500 (đồng).

Một cổ phiếu B sẽ nhận được số tiền chi trả cổ tức là: 12% . 40 000 = 4 800 (đồng).

Do đó, bác Dũng nhận được số tiền chi trả cổ tức là: T = 1 500x + 4 800y (đồng).

Vì vậy, yêu cầu của bác Dũng có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):

Ta cần tìm giá trị lớn nhất của biểu thức T = 1 500x + 4 800y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 10 000),  C(40 000; 0) (hình vẽ).

Bước 2. Tính giá trị của biểu thức T(x; y) = 1 500x + 4 800y tại các đỉnh của tứ giác này:

T(0; 0) = 0; T(0; 10 000) = 48 000 000; 

T(40 000; 0) = 60 000 000.

Bước 3. Ta đã biết biểu thức T = 1 500x + 4 800y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, kết hợp điều kiện x và y là các số tự nhiên, ta được giá trị lớn nhất cần tìm là T(40 000; 0) = 60 000 000.

Vậy bác Dũng nên đầu tư loại A 40 000 cổ phiếu để lợi nhuận thu được là lớn nhất.