Câu hỏi:

12/07/2024 999 Lưu

Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là 1 305 mg. Trong 1 lạng (100 g) đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi (Nguồn: https://hongngochospital.vn). Gia đình chị Thảo có bốn người đang độ tuổi trưởng thành, dự định ăn một ngày tối thiểu 3 lạng đậu nành và 7 lạng thịt, nhưng ăn không quá 4 kg cả đậu nành và thịt. Giá tiền đậu nành là 50 000 đồng/kg, giá tiền thịt là 85 000 đồng 1 kg. Hỏi gia đình chị Thảo cần mua bao nhiêu lạng mỗi loại đậu nành và thịt sao cho chi phí để mua hai loại thực phẩm đó là nhỏ nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là 1 305 mg. Trong 1 lạng (100 g) đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi (Nguồn: https://hongngochospital.vn). Gia đình chị Thảo có bốn người đang độ tuổi trưởng thành, dự định ăn một ngày tối thiểu 3 lạng đậu nành và 7 lạng thịt, nhưng ăn không quá 4 kg cả đậu nành và thịt. Giá tiền đậu nành là 50 000 đồng/kg, giá tiền thịt là 85 000 đồng 1 kg. Hỏi gia đình chị Thảo cần mua bao nhiêu lạng mỗi loại đậu nành và thịt sao cho chi phí để mua hai loại thực phẩm đó là nhỏ nhất?

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x và y lần lượt là số sản phẩm loại A và loại B người đó cần sơn (x ℕ, y ℕ).

Số tiền lãi người đó thu được là: T = 10x + 8y (triệu đồng).

Số kg sơn xanh người đó cần dùng là: 6x + 2y ≤ 12 hay 3x + y ≤ 6;

Số kg sơn vàng người đó cần dùng là: 2x + 2y ≤ 8 hay x + y ≤ 4.

Vì vậy, yêu cầu của người đó có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):  

Ta cần tìm giá trị lớn nhất của biểu thức T = 10x + 8y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 4), B(1; 3), C(2; 0) (hình vẽ).

Bước 2. Tính giá trị của biểu thức T(x; y)  = 10x + 8y tại các đỉnh của tứ giác này:

T(0; 0) = 0; T(0; 4) = 32; T(1; 3) = 34; T(2; 0) = 20.

Bước 3. Ta đã biết biểu thức T = 10x + 8y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, ta được giá trị lớn nhất cần tìm là T(1; 3) = 34.

Bước 4. Vì 1 và 3 đều là các số tự nhiên nên cặp số (1; 3) là nghiệm của bài toán (I).

Vậy để số tiền lãi thu được là lớn nhất thì cần sơn 1 sản phẩm loại A và 3 sản phẩm loại B.

Lời giải

Đổi 40 triệu đồng = 40 000 nghìn đồng.

Gọi x là số chiếc bàn và y là số chiếc tủ cần sản xuất (x ℕ, y ℕ).

Số ghế cần sản xuất là: 6x (chiếc).

Tổng doanh thu đạt được là: T = 260.x + 120.6x + 600.y = 980x + 600y (nghìn đồng).

Công lao động để sản xuất các loại sản phẩm trên là:

2x + 1.6x + 3y ≤ 500 hay 8x + 3y ≤ 500.

Chi phí sản xuất các loại sản phẩm trên là:

100x + 40.6x + 250y ≤ 40 000 hay 34x + 25y ≤ 4 000.

Vì vậy, yêu cầu của cơ sở sản xuất có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):  

Ta cần tìm giá trị lớn nhất của biểu thức T = 980x + 600y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 160), C(62,5; 0) (hình vẽ).

Bước 2. Tính giá trị của biểu thức T(x; y) = 980x + 600y tại các đỉnh của tứ giác này:

T(0; 0) = 0; T(0; 160) = 96 000;  T(62,5; 0) = 61 250.

Bước 3. Ta đã biết biểu thức T = 980x + 600y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, kết hợp điều kiện x và y là các số tự nhiên, ta được giá trị lớn nhất cần tìm là T(0; 160) = 96 000.

Vậy chỉ cần sản xuất 160 chiếc tủ để tổng doanh thu đạt được cao nhất.