Câu hỏi:
12/07/2024 10,949
Hai bạn An và Bình thi đấu bóng bàn. Xác suất thắng của An trong một ván là 0,4. Hai bạn thi đấu đủ 3 ván đấu. Người nào có số ván đấu thắng nhiều hơn là người thắng trận đấu đó. Giả sử các ván đấu là độc lập. Tính xác suất để An thắng trong trận đấu.
Quảng cáo
Trả lời:
Xác suất để An thắng trận đấu là xác suất để An thắng ít nhất hai ván đấu.
Gọi biến cố A: “An thắng trận đấu đó”.
Trường hợp 1: An thắng cả ba ván đấu
Khi đó ta có P1 = 0,43 = 0,064.
Trường hợp 2: An thắng 2 ván đấu.
Khi đó ta có: .
Vậy P(A) = P1 + P2 = 0,064 + 0,288 = 0,352.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
X là số linh kiện không đạt tiêu chuẩn.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10; p = 0,01.
Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn tức là X ≤ 1.
Theo chú ý về phân bố nhị thức ta có:
.
Vậy tỉ lệ những hộp linh kiện điện tử loại I là 99,6%.
Lời giải
Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là .
Gọi X là số con xúc xắc xuất hiện mặt 6 chấm.
Bác Hưng thắng cuộc 1 ván khi X ≥ 2.
Xác suất để bác Hưng thắng cuộc 1 ván là: .
Gọi Y là số ván thắng của bác Hưng.
Xác suất để bác Hưng thắng ít nhất 2 ván là
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.