Câu hỏi:
12/07/2024 552Một công ty cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 10 chiếc và loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa 20 người và 0,6 tấn hàng; mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn hàng. Phải thuê bao nhiêu xe loại A và bao nhiêu xe loại B để chi phí bỏ ra là ít nhất mà vẫn chở được hết hàng và người?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x và y lần lượt là số xe loại A và loại B cần thuê.
Chi phí thuê xe là: F(x; y) = 4x + 3y (triệu đồng).
Hệ bất phương trình ràng buộc x và y là:
Miền nghiệm của hệ bất phương trình trên là miền tứ giác ABCD trong hình vẽ dưới đây:
Các điểm cực biên là: A(2,5; 9), B(10; 9), C(10; 2), D(5; 4).
Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền tứ giác ABCD. Ta biết rằng F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị củ F(x; y) tại các đỉnh của tứ giác ta được:
F(2,5; 9) = 4.2,5 + 3.9 = 37;
F(10; 9) = 4.10 + 3.9 = 67;
F(10; 2) = 4.10 + 3.2 = 46;
F(5; 4) = 4.5 + 3.4 = 32.
Giá trị nhỏ nhất của F(x; y) bằng 32 tại D(5; 4). Phương án tối ưu là (5; 4).
Vậy phải thuê 5 xe loại A và 4 xe loại B để chi phí bỏ ra là ít nhất (32 triệu đồng) mà vẫn chở được hết hàng và người.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một trung tâm tổ chức sự kiện có một phòng tổ chức lễ cưới với hai kiểu bàn ăn: bàn hình chữ nhật ngồi 6 người với giá thuê 200 nghìn đồng và bàn tròn ngồi 10 người với giá thuê 300 nghìn đồng. Anh Nam muốn thuê phòng để tổ chức đám cưới với 250 khách mời. Căn phòng chỉ chứa được tối đa 35 bàn các loại và chỉ có 15 bàn hình chữ nhật. Hỏi anh Nam phải thuê mỗi loại bàn bao nhiêu để giảm thiểu tối đa chi phí mà vẫn đáp ứng được các yêu cầu trên.
Câu 2:
Một xí nghiệp sản xuất hai loại sản phẩm I và II. Mỗi kilôgam sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ làm, đem lại mức lợi nhuận 40 nghìn đồng. Mỗi kilôgam sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ làm, đem lại mức lợi nhuận là 30 nghìn đồng. Xí nghiệp có 200 kg nguyên liệu và tối đa 1 200 giờ làm việc. Hãy đặt kế hoạch sản xuất để xí nghiệp có mức lợi nhuận cao nhất.
Câu 3:
Một cơ sở sản xuất hai loại sữa chua X và Y. Nguyên liệu chính để sản xuất hai loại sữa chua này là dâu tây, sữa và đường. Để sản xuất một đơn vị sữa chua X và một đơn vị sữa chua Y cần lượng nguyên liệu như trong bảng:
Nguồn nguyên liệu dự trữ dâu tây, sữa và đường lần lượt là 1,2 tấn; 0,8 tấn và 0,3 tấn. Giá bán mỗi đơn vị sữa chua X và Y lần lượt là 800 nghìn đồng và 1,2 triệu đồng. Cơ sở sản xuất cần sản xuất bao nhiêu đơn vị sữa chua X và Y để lợi nhuận thu được là lớn nhất?
Câu 4:
Một chủ trang trại cần sử dụng phân bón để chăm sóc cho một loại đậu tương. Loại đậu tương này cần ít nhất 18 đơn vị đạm và ít nhất 6 đơn vị phosphate. Ông chủ trang trại có thể sử dụng hai loại phân bón X và Y. Giá cả, hàm lượng đạm và hàm lượng phosphate có trong một tạ phân X và một tạ phân Y được cho bởi bảng sau:
Hãy cho biết cần phải mua bao nhiêu tạ phân loại X, bao nhiêu tạ phân loại Y để chi phí là thấp nhất mà vẫn đảm bảo chế độ dinh dưỡng cho loại đậu tương trên?
Câu 5:
Một hãng bán gà rán nghiên cứu thấy rằng để làm ra món gà rán có chất lượng tốt nhất thì thức ăn cho gà cần được bổ sung thêm 4 loại vitamin V1, V2, V3 và V4. Tổng lượng vitamin tối thiểu phải bổ sung cho mỗi 100 gam thức ăn cho gà là: V1 cần 50 đơn vị, V2 cần 100 đơn vị, V3 cần 60 đơn vị và V4 cần 180 đơn vị. Có hai loại thức ăn S1 và S2 cung cấp 4 loại vitamin này. Loại S1 có giá 720 đồng một gam và mỗi gam S1 có chứa 5 đơn vị V1, 25 đơn vị V2, 10 đơn vị V3 và 35 đơn vị V4. Loại S2 có giá 960 đồng một gam và mỗi gam S2 có chứa 25 đơn vị V1, 10 đơn vị V2, 10 đơn vị V3 và 20 đơn vị V4. Hỏi cần phải thêm vào 100 gam thức ăn cho gà mỗi loại S1 và S2 bao nhiêu gam để chi phí là thấp nhất mà vẫn đảm bảo dinh dưỡng cho gà?
Câu 6:
Một nhà máy hoá chất sản xuất hai hợp chất X và Y. Khi sản xuất một đơn vị hợp chất X sẽ có 2 dm3 khí CO (carbon monoxide) và 6 dm3 khí SO2 (sulfur dioxide) phát tán ra môi trường. Khi sản xuất một đơn vị hợp chất Y sẽ có 4 dm3 khí CO và 3 dm3 khí SO2 phát tán ra môi trường. Các yêu cầu về khí thải chỉ cho phép nhà máy phát thải ra môi trường mỗi tuần không quá 3 000 dm3 khí CO và không quá 5 400 dm3 khí SO2. Nhà máy có thể bán hết tất cả các đơn vị hợp chất X và Y sản xuất ra với giá 36 000 đồng một đơn vị hợp chất X và 24 000 đồng một đơn vị hợp chất Y. Xác định số đơn vị hợp chất X và Y mỗi loại cần sản xuất trong một tuần để thu được lợi nhuận cao nhất mà vẫn đảm bảo các yêu cầu về khí thải môi trường.
về câu hỏi!