Câu hỏi:

12/07/2024 7,508

Biết rằng C(x) = 16 000 + 500x – 1,64x2 + 0,004x3 là hàm chi phí và p(x) = 1 700 – 7x là hàm cầu của x đơn vị hàng hóa. Hãy tìm mức sản xuất để lợi nhuận là lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm lợi nhuận là:

P(x) = xp(x) – C(x)

= x.(1 700 – 7x) – (16 000 + 500x – 1,64x2 + 0,004x3)

= 1 700x – 7x2 – 16 000 – 500x + 1,64x2 – 0,004x3

= – 0,004x3 – 5,36x2 + 1 200x – 16 000.

Ta cần tìm x để P(x) là lớn nhất.

Ta có P’(x) = – 0,012x2 – 10,72x + 1 200.

P’(x) = 0 – 0,012x2 – 10,72x + 1 200 = 0

x ≈ 100,6.

Ta có P(100) = 46 400 và P(101) = 46 401,436 nên P(100) < P(101).

Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 100 đơn vị hàng hóa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm doanh thu là: R(x) = x.p(x) = x.(1 500 – 3x) = 1 500x – 3x2 (nghìn đồng).

Hàm lợi nhuận là:

P(x) = R(x) – C(x) = 1 500x – 3x2 – (18 000 + 500x – 1,6x2 + 0,004x3)

= 1 500x – 3x2 – 18 000 – 500x + 1,6x2 – 0,004x3

= – 0,004x3 – 1,4x2 + 1 000x – 18 000.

Vậy công thức của hàm lợi nhuận là P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng).

Lời giải

Hàm doanh thu khi chở x khách hàng là:

 

= 450 000x – 7 500x2 + 31,25x3 (đồng) với 0 ≤ x ≤ 60.

Đạo hàm của hàm R(x) là: R’(x) = 450 000 – 15 000x + 93,75x2.

R’(x) = 0 450 000 – 15 000x + 93,75x2 = 0

x = 120 (không thuộc [0; 60]) hoặc x = 40 (thỏa mãn).

Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:

R(0) = 0; R(40) = 8 000 000; R(60) = 6 750 000.

Vì giá trị R(40) là giá trị lớn nhất trong ba giá trị trên, nên giá trị lớn nhất của R(x) đạt được khi x = 40.

Vậy xe có doanh thu cao nhất khi chở 40 hành khách và doanh thu đó bằng 8 000 000 đồng.