Một xe khách tuyến có sức chứa tối đa là 60 hành khách. Nếu chuyến xe chở x hành khách thì giá cho mỗi hành khách là
(đồng). Xe có doanh thu cao nhất khi chở bao nhiêu hành khách, và doanh thu đó bằng bao nhiêu?
Một xe khách tuyến có sức chứa tối đa là 60 hành khách. Nếu chuyến xe chở x hành khách thì giá cho mỗi hành khách là (đồng). Xe có doanh thu cao nhất khi chở bao nhiêu hành khách, và doanh thu đó bằng bao nhiêu?
Quảng cáo
Trả lời:
Hàm doanh thu khi chở x khách hàng là:
= 450 000x – 7 500x2 + 31,25x3 (đồng) với 0 ≤ x ≤ 60.
Đạo hàm của hàm R(x) là: R’(x) = 450 000 – 15 000x + 93,75x2.
R’(x) = 0 ⇔ 450 000 – 15 000x + 93,75x2 = 0
⇔ x = 120 (không thuộc [0; 60]) hoặc x = 40 (thỏa mãn).
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
R(0) = 0; R(40) = 8 000 000; R(60) = 6 750 000.
Vì giá trị R(40) là giá trị lớn nhất trong ba giá trị trên, nên giá trị lớn nhất của R(x) đạt được khi x = 40.
Vậy xe có doanh thu cao nhất khi chở 40 hành khách và doanh thu đó bằng 8 000 000 đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm doanh thu là: R(x) = x.p(x) = x.(1 500 – 3x) = 1 500x – 3x2 (nghìn đồng).
Hàm lợi nhuận là:
P(x) = R(x) – C(x) = 1 500x – 3x2 – (18 000 + 500x – 1,6x2 + 0,004x3)
= 1 500x – 3x2 – 18 000 – 500x + 1,6x2 – 0,004x3
= – 0,004x3 – 1,4x2 + 1 000x – 18 000.
Vậy công thức của hàm lợi nhuận là P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng).
Lời giải
Xét hàm lợi nhuận P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng) với x ≥ 0.
Ta có P’(x) = –0,012x2 – 2,8x + 1 000.
P’(x) = 0 ⟺ –0,012x2 – 2,8x + 1 000 = 0 ⇔ x ≈ 194,7.
Ta có P(194) = 94 104,064 và P(195) = 94 105,5 nên P(194) < P(105).
Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 195 đơn vị hàng hóa.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.