Câu hỏi:

12/07/2024 2,550

Cho biến ngẫu nhiên rời rạc X có phân bố nhị thức B(5; 0,2).

Tính kì vọng và độ lệch chuẩn của X.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có với k = 0, 1, 2, 3, 4, 5.

Lần lượt tính P(X = k) với k = 0, 1, 2, 3, 4, 5 từ công thức trên, ta thu được bảng phân bố xác suất của X như sau:

X

0

1

2

3

4

5

P

Kì vọng của X là:

Phương sai của X là:

Độ lệch chuẩn của X là:

Chú ý: Ta cũng có thể tính kì vọng và phương sai của X như sau:

E(X) = np = 5 . 0,2 = 1 và V(X) = np(1 – p) = 5 . 0,2 . (1 – 0,2) = 0,8.

Do đó độ lệch chuẩn của X là:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi T là phép thử “Phỏng vấn ngẫu nhiên một người lao động từ khi công nghiệp”. Theo đề bài, phép thử T được lặp lại 10 lần một cách độc lập. Gọi X là biến cố “Người lao động có bằng đại học”. Ta có P(X) = 30% = 0,3.

Gọi Xk là biến cố “Có k người có bằng đại học trong 10 người lao động được phỏng vấn”, với k = 0, 1, …, 10. Áp dụng công thức Bernoulli, ta có:

với k = 0, 1, …, 10.

Do đó,

Ta có

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP