Câu hỏi:

13/07/2024 3,059

Năm 2001, Cộng đồng châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Không có xét nghiệm nào cho kết quả chính xác 100%. Một loại xét nghiệm, mà ở đây ta gọi là xét nghiệm A, cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70%, còn khi con bò không bị bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%. Biết rằng tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Hỏi khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là bao nhiêu?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hai biến cố:

A: “Con bò được chọn ra không bị mắc bệnh bò điên”.

B: “Con bò được chọn ra có phản ứng dương tính”.

tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là P() = 0,000013.

Suy ra P(A) = 1 – 0,000013 = 0,999987.

Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%, suy ra P(B | A) = 0,1.

Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70% nên P(B | ) = 0,7.

Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là P( | B). Áp dụng công thức Bayes, ta có:

.

Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
Tính xác suất để linh kiện được lấy ra là linh kiện tốt.

Xem đáp án » 13/07/2024 2,706

Câu 2:

Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.

Xem đáp án » 13/07/2024 1,709

Câu 3:

Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.

Xem đáp án » 13/07/2024 1,558

Câu 4:

Được biết có 5% đàn ông bị mù màu, và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu?

Xem đáp án » 13/07/2024 889

Câu 5:

Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.

Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Xem đáp án » 12/07/2024 659

Câu 6:

Cho hai biến cố A, B với P(B) = 0,6; P(A | B) = 0,7 và P(A | ) = 0,4. Khi đó, P(A) bằng:

A. 0,7.

B. 0,4.

C. 0,58.

D. 0,52.

Xem đáp án » 13/07/2024 464

Bình luận


Bình luận