Giải SGK Toán 12 CD Bài 2. Công thức xác suất toàn phần. Công thức Bayes có đáp án
54 người thi tuần này 4.6 374 lượt thi 16 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Sau bài học này, ta giải quyết được bài toán trên như sau:
Xét hai biến cố sau:
A: “Linh kiện được chọn ra đạt tiêu chuẩn”;
B: “Linh kiện được chọn ra do nhà máy I sản xuất”.
Khi đó, ta có:
P(B) = 0,55; P() = 1 – P(B) = 1 – 0,55 = 0,45;
P(A | B) = 0,9; P(A | ) = 0,87.
Áp dụng công thức xác suất toàn phần, ta có:
P(A) = P(B) ∙ P(A | B) + P() ∙ P(A |
) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.
Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.
Lời giải
Ω = {1; 2; 3; …; 24}.
A = {3; 6; 9; 12; 15; 18; 21; 24}.
B = {4; 8; 12; 16; 20; 24}.
A ∩ B = {12; 24}.
= {1; 2; 3; 5; 6; 7; 9; 10; 11; 13; 14; 15; 17; 18; 19; 21; 22; 23}.
A ∩ = {3; 6; 9; 15; 18; 21}.
Lời giải
Từ câu a), suy ra n(A) = 8, n(A ∩ B) = 2, n(A ∩ ) = 6.
Do 8 = 2 + 6 nên n(A) = n(A ∩ B) + n().
Khi đó, P(A) = =
=
+
.
Mà P(A ∩ B) = ; P(
) =
.
Vậy P(A) = P(A ∩ B) + P().
Lời giải
Ta có P(B) ∙ P(A | B) = P(B) ∙ = P(A ∩ B).
P() ∙ P(A |
) = P(
) ∙
= P(
).
Vì hai biến cố A ∩ B và là hai biến cố xung khắc và (A ∩ B) ∪ (
) = A nên theo công thức xác suất ta có
P(A) = P(A ∩ B) + P() = P(B) ∙ P(A | B) + P(
) ∙ P(A |
).
Lời giải
Số linh kiện nhà máy I sản xuất ra là: 55% ∙ 10 000 = 5 500 (linh kiện).
Số linh kiện nhà máy II sản xuất ra là: 45% ∙ 10 000 = 4 500 (linh kiện).
Số linh kiện nhà máy I sản xuất ra đạt tiêu chuẩn là: 90% ∙ 5 500 = 4 950 (linh kiện), không đạt tiêu chuẩn là: 5 500 – 4 950 = 550 (linh kiện).
Số linh kiện nhà máy II sản xuất ra đạt tiêu chuẩn là: 87% ∙ 4 500 = 3 915 (linh kiện), không đạt tiêu chuẩn là: 4 500 – 3 915 = 585 (linh kiện).
Từ đó ta có bảng thống kê như sau (đơn vị: linh kiện)
Tiêu chuẩn Linh kiện |
Đạt tiêu chuẩn |
Không đạt tiêu chuẩn |
Nhà máy I sản xuất |
4 950 |
550 |
Nhà máy II sản xuất |
3 915 |
585 |
Xét hai biến cố sau:
A: “Linh kiện được chọn ra đạt tiêu chuẩn”;
B: “Linh kiện được chọn ra do nhà máy I sản xuất”.
Khi đó, ta có:
P(B) = 0,55; P() = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A |
) = 0,87.
Áp dụng công thức xác suất toàn phần, ta có:
P(A) = P(B) ∙ P(A | B) + P() ∙ P(A |
) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.
Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
75 Đánh giá
50%
40%
0%
0%
0%