Câu hỏi:

12/07/2024 180

Một hộp có 24 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 24; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên 1 chiếc thẻ trong hộp. Xét biết cố A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và biến cố B: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 4”.

Viết các tập con của không gian mẫu tương ứng với các biến cố A, B, A ∩ B, (Hình 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ω = {1; 2; 3; …; 24}.

A = {3; 6; 9; 12; 15; 18; 21; 24}.

B = {4; 8; 12; 16; 20; 24}.

A ∩ B = {12; 24}.

= {1; 2; 3; 5; 6; 7; 9; 10; 11; 13; 14; 15; 17; 18; 19; 21; 22; 23}.

A ∩ = {3; 6; 9; 15; 18; 21}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hai biến cố:

A: “Con bò được chọn ra không bị mắc bệnh bò điên”.

B: “Con bò được chọn ra có phản ứng dương tính”.

tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là P() = 0,000013.

Suy ra P(A) = 1 – 0,000013 = 0,999987.

Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%, suy ra P(B | A) = 0,1.

Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70% nên P(B | ) = 0,7.

Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là P( | B). Áp dụng công thức Bayes, ta có:

.

Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091.

Lời giải

Xét hai biến cố:

A: “Người được chọn là đàn ông”;

B: “Người được chọn bị mù màu”.

Theo bài ra ta có: P(B | A) = 0,05; P(B | ) = 0,0025.

Vì số đàn ông bằng số phụ nữ nên ta có P(A) = 0,5 và P() = 1 – 0,5 = 0,5.

Áp dụng công thức Bayes, ta có xác suất để một người mù màu được chọn là đàn ông là: P(A | B) = ≈ 0,9524.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay