Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
369 lượt thi 39 câu hỏi
819 lượt thi
Thi ngay
628 lượt thi
227 lượt thi
486 lượt thi
180 lượt thi
379 lượt thi
245 lượt thi
418 lượt thi
264 lượt thi
Câu 1:
Cho hàm số y = f(x) có bảng xét dấu của đạo hàm f'(x) như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (−∞; 0).
B. (2; +∞).
C. (−∞; 2).
D. (0; 2).
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (−2; 0).
B. (4; +∞).
C. (−∞; 0).
D. (−2; −1).
Câu 2:
Cho hàm số y = f(x) có đạo hàm f'(x)= −x(2x – 5), ∀x ∈ ℝ. Khẳng định nào dưới đây đúng?
A. f(−2) < f(−1).
B. f(0) > f(2).
C. f(3) > f(5).
D. f(3) > f(2).
Câu 3:
Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây là đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 4:
Cho hàm số . Mệnh đề nào dưới đây là đúng?
A. Hàm số đồng biến trên khoảng (−∞; 1) và (1; +∞).
B. Hàm số nghịch biến trên ℝ.
C. Hàm số đồng biến trên ℝ.
D. Hàm số nghịch biến trên khoảng (−∞; 1) và (1; +∞).
Câu 5:
Trong các hàm số sau, hàm số đồng biến trên ℝ là:
A. y = x − .
B. y = 2x3 − x2 + 5x + 1.
C. y = x4 + 2x2 − 3.
D. y = 2x2 + 3.
Câu 6:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như Hình 4. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
B. (3; +∞).
C. (−1; 1).
D. (−∞; −1).
Câu 7:
Cho hàm số y = f(x) có đạo hàm trên ℝ và bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là:
A. 0.
B. 1.
C. 2.
D. 3.
Câu 8:
Điểm cực đại của hàm số đã cho là:
A. −1.
B. 3.
D. 0.
Câu 9:
Mệnh đề nào dưới đây đúng?
A. Hàm số đạt cực tiểu tại x = −5.
B. Hàm số có giá trị cực đại bằng 0.
C. Hàm số đạt cực tiểu tại x = 2.
D. Hàm số đạt cực đại tại x = 4.
Câu 10:
Cho hàm số f(x) có đạo hàm f'(x) = x2(x2 – 1)2(x – 2), ∀x ∈ ℝ. Số điểm cực trị của hàm số đã cho là:
A. 1.
B. 2.
C. 3.
D. 4.
Câu 11:
Cho hàm số y = 2x3 + 3x + 2. Kết luận nào sau đây đúng?
A. Hàm số có 3 cực trị.
B. Hàm số có 2 cực trị.
C. Hàm số có 1 cực trị.
D. Hàm số không có cực trị.
Câu 12:
Hàm số y = x3 – 3x2 – 9x – 3 đạt cực tiểu tại điểm:
D. −30.
Câu 13:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như Hình 5. Số điểm cực trị của hàm số đã cho là:
A. 2.
B. 4.
C. 1.
Câu 14:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như Hình 6. Giá trị cực tiểu của hàm số đã cho là:
C. −1.
Câu 15:
Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số y = f'(x) như Hình 7. Số điểm cực trị của hàm số y = f(x) là:
A. 4.
D. 1.
Câu 16:
Cho hàm số y = x3 – 3x + 2.
a) y' = 3x2 – 3.
Đ
S
b) y' = 0 khi x = −1, x = 1.
c) y' > 0 khi x ∈ (−1; 1) và y' < 0 khi x ∈ (−∞; −1) ∪ (1; +∞).
d) Giá trị cực đại của hàm số là fCĐ = 0.
Câu 17:
Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8.
a) f'(x) = 0 khi x = 0, x = 1, x = 3.
b) Hàm số y = f(x) đồng biến trên khoảng (−∞; 0).
c) f'(x) > 0 khi x ∈ (0; 3).
d) Hàm số y = f(x) đồng biến trên (0; 3).
Câu 18:
Tìm các khoảng đơn điệu của mỗi hàm số sau:
y = x3 + x2 + 3x – 1;
Câu 19:
Câu 20:
Câu 21:
Câu 22:
Câu 23:
Câu 24:
Câu 25:
Câu 26:
Câu 27:
Câu 28:
Dùng đạo hàm của hàm số, hãy giải thích:
Hàm số y = ax đồng biến trên ℝ khi a > 1, nghịch biến trên ℝ khi 0 < a < 1.
Câu 29:
Câu 30:
Chứng minh rằng:
Hàm số nghịch biến trên khoảng (−∞; −2) và đồng biến trên khoảng
(2; +∞).
Câu 31:
Hàm số y = ln(x2 + 1) nghịch biến trên khoảng (−∞; 0) và đồng biến trên khoảng
(0; +∞).
Câu 32:
Hàm số đồng biến trên khoảng (−∞; 1) và nghịch biến trên khoảng (1; +∞).
Câu 33:
Tìm điểm cực trị của mỗi hàm số sau:
y = x.ex;
Câu 34:
Câu 35:
Câu 36:
Câu 37:
Trong một thí nghiệm y học, người ta cấy
1 000 con vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức:
,
trong đó t là thời gian tính bằng giây (t ≥ 0) (Nguồn R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Trong khoảng thời gian nào từ lúc nuôi cấy, lượng vi khuẩn sẽ tăng lên?
Câu 38:
Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình
s(t) = t3 – 6t2 + 14t + 1,
trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào của 5 giây đầu tiên thì vận tốc tức thời của chất điểm tăng lên?
74 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com