Giải SGK Toán 12 Cánh diều Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số có đáp án
42 người thi tuần này 4.6 601 lượt thi 20 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Xét hàm số Q(t) = với t ∈ [0; 20].
Ta có Q'(t) = ;
Q'(t) = 0 hoặc t = 0.
Bảng biến thiên của hàm số trên đoạn [0; 20] như sau:
Từ bảng biến thiên suy ra tại , tức là lưu lượng nước của con sông lớn nhất là m3/phút tại thời điểm phút.
Cảnh báo lũ được đưa ra khi lưu lượng nước của con sông lên đến 550 m3/phút, tức là Q(t) ≥ 550 ⇔ ≥ 550 ⇔ ≥ 0 .
Lại có t ∈ [0; 20] nên .
Vậy tại thời điểm t ∈ [15; 5 + ] phút thì cảnh báo lũ được đưa ra.
Lời giải
Tập xác định của hàm số đã cho là ℝ.
Ta có y' = 2x – 2;
y' = 0 ⇔ 2x – 2 = 0 ⇔ x = 1.
Bảng biến thiên của hàm số như sau:

Vẽ đồ thị hàm số:
Hàm số y = x2 – 2x – 3 là hàm số bậc hai nên đồ thị của nó là một parabol có:
+ Đỉnh I(1; – 4);
+ Giao với trục hoành tại các điểm A(3; 0) và B(– 1; 0);
+ Giao với trục tung tại điểm C(0; – 3).
Ta vẽ được đồ thị hàm số đã cho như sau:

Lời giải
1) Tập xác định: ℝ \ {– 1}.
2) Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.
. Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
, với mọi x ≠ – 1.
Bảng biến thiên:

Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).
Hàm số không có cực trị.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; – 1).
Giao điểm của đồ thị với trục hoành: (1; 0).
Đồ thị hàm số đi qua các điểm (0; – 1), (1; 0), (– 2; 3) và (– 3; 2).
Đồ thị hàm số nhận giao điểm I(– 1; 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Vậy đồ thị hàm số được cho ở hình trên.
Lời giải
a) y = – x3 + 3x – 2
1) Tập xác định: ℝ.
2) Sự biến thiên:
Giới hạn tại vô cực: .
y' = – 3x2 + 3 = – 3(x2 – 1);
y' = 0 ⇔ – 3(x2 – 1) = 0 ⇔ x = 1 hoặc x = – 1.
Bảng biến thiên:

Hàm số đã cho đồng biến trên khoảng (– 1; 1), nghịch biến trên mỗi khoảng (– ∞; – 1) và (1; + ∞).
Hàm số đạt cực đại tại x = 1, yCĐ = 0; hàm số đạt cực tiểu tại x = – 1, yCT = – 4.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; – 2).
Giao điểm của đồ thị với trục hoành:
Xét phương trình – x3 + 3x – 2 = 0 ⇔ – (x – 1)2(x + 2) = 0 ⇔ x = 1 hoặc x = – 2.
Vậy đồ thị hàm số giao với trục hoành tại hai điểm (1; 0) và (– 2; 0).
Đồ thị hàm số đi qua các điểm (– 2; 0), (0; – 2), (1; 0) và (– 1; – 4).

Vậy đồ thị hàm số y = – x3 + 3x – 2 được cho như hình trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(0; – 2).
Lời giải
b) y = x3 + 3x2 + 3x + 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
Giới hạn tại vô cực: .
y' = 3x2 + 6x + 3 = 3(x + 1)2;
y' ≥ 0 với mọi x ∈ ℝ;
y' = 0 khi x = – 1.
Bảng biến thiên:

Hàm số đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; 1).
Giao điểm của đồ thị với trục hoành:
Giải phương trình x3 + 3x2 + 3x + 1 = 0 ta được x = – 1.
Vậy đồ thị hàm số giao với trục hoành tại điểm (– 1; 0).
Đồ thị hàm số đi qua các điểm (– 1; 0), (0; 1), (– 2; – 1).
Vậy đồ thị hàm số y = x3 + 3x2 + 3x + 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(– 1; 0).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
120 Đánh giá
50%
40%
0%
0%
0%