Câu hỏi:

17/04/2024 8,646

Xét phản ứng hóa học tạo ra chất C từ hai chất A và B:

A + B → C.

Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: [C] =  a2KtaKt+1 (mol/l), trong đó K là hằng số dương (Nguồn: Đỗ Đức Thái (Chủ biên) và các đồng tác giả, Giáo trình Phép tính vi tích phân hàm một biến, NXB Đại học Sư phạm, 2023).

a) Tìm tốc độ phản ứng ở thời điểm t > 0.

b) Chứng minh nếu x = [C] thì x'(t) = K(a – x)2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có

                                        A       +       B             C

Ban đầu:                          a        +       a                  0

Sau thời gian t:        aa2KtaKt+1   aa2KtaKt+1    a2KtaKt+1

Tốc độ ở thời điểm t > 0 là  vt=ΔCCΔt=a2KtaKt+1:t=a2KaKt+1.

b) Ta có x = [C], tức là x =  a2KtaKt+1.

x'(t) =  a2KtaKt+1'=a2KaKt+1aKa2KtaKt+12=a2KaKt+12.

K(a – x)2Kaa2KtaKt+12=Ka2Kt+aa2KtaKt+12=Ka2aKt+12=a2KaKt+12.

Từ đó suy ra x'(t) = K(a – x)2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t [0; 50].

Ta có h'(t) = – 0,03t2 + 2,2t – 30;

Trên khoảng (0; 50), h'(t) = 0 khi t ≈ 18.

h(0) = 250; h(18) = 8,08; h(50) = 250.

Do đó,  min0;50ht=8,08 tại t = 18.

Vậy tại thời điểm t = 18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.

b) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t [0; 70].

Ta có h'(t) = – 0,03t2 + 2,2t – 30;

Trên khoảng (0; 70), h'(t) = 0 khi t ≈ 18 hoặc t ≈ 55.

Bảng biến thiên của hàm số h(t) như sau:

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

Trên khoảng (0; 70), đồ thị hàm số h(t) đi qua các điểm (0; 250), (10; 50), (50; 250) và (60; 250).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

Lời giải

Ÿ Tập xác định của hàm số đã cho là ℝ.

Ÿ Ta có y' = 2x – 2;

          y' = 0 2x – 2 = 0 x = 1.

Bảng biến thiên của hàm số như sau:

Lập bảng biến thiên và vẽ đồ thị của hàm số y = x^2 – 2x – 3. (ảnh 1)

Ÿ Vẽ đồ thị hàm số:

Hàm số y = x2 – 2x – 3 là hàm số bậc hai nên đồ thị của nó là một parabol có:

+ Đỉnh I(1; – 4);

+ Giao với trục hoành tại các điểm A(3; 0) và B(– 1; 0);

+ Giao với trục tung tại điểm C(0; – 3).

Ta vẽ được đồ thị hàm số đã cho như sau:

Lập bảng biến thiên và vẽ đồ thị của hàm số y = x^2 – 2x – 3. (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP