Quảng cáo
Trả lời:
b) y = x3 + 3x2 + 3x + 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
Giới hạn tại vô cực: .
y' = 3x2 + 6x + 3 = 3(x + 1)2;
y' ≥ 0 với mọi x ∈ ℝ;
y' = 0 khi x = – 1.
Bảng biến thiên:

Hàm số đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; 1).
Giao điểm của đồ thị với trục hoành:
Giải phương trình x3 + 3x2 + 3x + 1 = 0 ta được x = – 1.
Vậy đồ thị hàm số giao với trục hoành tại điểm (– 1; 0).
Đồ thị hàm số đi qua các điểm (– 1; 0), (0; 1), (– 2; – 1).
Vậy đồ thị hàm số y = x3 + 3x2 + 3x + 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(– 1; 0).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 50].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 50), h'(t) = 0 khi t ≈ 18.
h(0) = 250; h(18) = 8,08; h(50) = 250.
Do đó, tại t = 18.
Vậy tại thời điểm t = 18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.
b) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 70].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 70), h'(t) = 0 khi t ≈ 18 hoặc t ≈ 55.
Bảng biến thiên của hàm số h(t) như sau:

Trên khoảng (0; 70), đồ thị hàm số h(t) đi qua các điểm (0; 250), (10; 50), (50; 250) và (60; 250).

Lời giải
Tập xác định của hàm số đã cho là ℝ.
Ta có y' = 2x – 2;
y' = 0 ⇔ 2x – 2 = 0 ⇔ x = 1.
Bảng biến thiên của hàm số như sau:

Vẽ đồ thị hàm số:
Hàm số y = x2 – 2x – 3 là hàm số bậc hai nên đồ thị của nó là một parabol có:
+ Đỉnh I(1; – 4);
+ Giao với trục hoành tại các điểm A(3; 0) và B(– 1; 0);
+ Giao với trục tung tại điểm C(0; – 3).
Ta vẽ được đồ thị hàm số đã cho như sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.