Câu hỏi:

17/04/2024 6,001 Lưu

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

b) y = – x3 + 3x2 – 1;

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) y = – x3 + 3x2 – 1

1) Tập xác định: ℝ.

2) Sự biến thiên:

Ÿ Giới hạn tại vô cực:  limx+y=,  limxy=+.

Ÿ y' = – 3x2 + 6x;

y' = 0 – 3x2 + 6x = 0 x = 0 hoặc x = 2.

Ÿ Bảng biến thiên:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:  b)y = – x^3 + 3x^2 – 1;  (ảnh 1)

Hàm số đã cho đồng biến trên khoảng (0; 2); nghịch biến trên mỗi khoảng (– ∞; 0) và (2; + ∞).

Hàm số đạt cực đại tại x = 2, y = 3; đạt cực tiểu tại x = 0, yCT = – 1.

3) Đồ thị

Ÿ Giao điểm của đồ thị với trục tung: (0; – 1).

Ÿ Giao điểm của đồ thị với trục hoành:

Giải phương trình – x3 + 3x2 – 1 = 0, ta thấy phương trình có 3 nghiệm phân biệt nên đồ thị hàm số cắt trục hoành tại 3 điểm.

Ÿ Đồ thị hàm số đi qua các điểm (– 1; 3), (0; – 1), (1; 1), (2; 3) và (3; – 1).

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:  b)y = – x^3 + 3x^2 – 1;  (ảnh 2)

Vậy đồ thị hàm số y = – x3 + 3x2 – 1 được cho như hình vẽ trên.

Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t [0; 50].

Ta có h'(t) = – 0,03t2 + 2,2t – 30;

Trên khoảng (0; 50), h'(t) = 0 khi t ≈ 18.

h(0) = 250; h(18) = 8,08; h(50) = 250.

Do đó,  min0;50ht=8,08 tại t = 18.

Vậy tại thời điểm t = 18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.

b) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t [0; 70].

Ta có h'(t) = – 0,03t2 + 2,2t – 30;

Trên khoảng (0; 70), h'(t) = 0 khi t ≈ 18 hoặc t ≈ 55.

Bảng biến thiên của hàm số h(t) như sau:

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

Trên khoảng (0; 70), đồ thị hàm số h(t) đi qua các điểm (0; 250), (10; 50), (50; 250) và (60; 250).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

Lời giải

Xét hàm số Q(t) =  15t3+5t2+100 với t [0; 20].

Ta có Q'(t) =  35t2+10t;

Q'(t) = 0  35t2+10t=0t=503 hoặc t = 0.

Bảng biến thiên của hàm số trên đoạn [0; 20] như sau:

 

Từ bảng biến thiên suy ra  max0;20Qt=1520027 tại  t=503, tức là lưu lượng nước của con sông lớn nhất là  1520027 m3/phút tại thời điểm  t=503 phút.

Cảnh báo lũ được đưa ra khi lưu lượng nước của con sông lên đến 550 m3/phút, tức là Q(t) ≥ 550  15t3+5t2+100 ≥ 550   15t3+5t2450≥ 0  t55715t5+57.

Lại có t [0; 20] nên  15t5+57.

Vậy tại thời điểm t [15; 5 +  57] phút thì cảnh báo lũ được đưa ra.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP