Quảng cáo
Trả lời:

b) y = – x3 + 3x2 – 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
Giới hạn tại vô cực: .
y' = – 3x2 + 6x;
y' = 0 ⇔ – 3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên:

Hàm số đã cho đồng biến trên khoảng (0; 2); nghịch biến trên mỗi khoảng (– ∞; 0) và (2; + ∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 3; đạt cực tiểu tại x = 0, yCT = – 1.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; – 1).
Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 1 = 0, ta thấy phương trình có 3 nghiệm phân biệt nên đồ thị hàm số cắt trục hoành tại 3 điểm.
Đồ thị hàm số đi qua các điểm (– 1; 3), (0; – 1), (1; 1), (2; 3) và (3; – 1).

Vậy đồ thị hàm số y = – x3 + 3x2 – 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 50].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 50), h'(t) = 0 khi t ≈ 18.
h(0) = 250; h(18) = 8,08; h(50) = 250.
Do đó, tại t = 18.
Vậy tại thời điểm t = 18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.
b) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 70].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 70), h'(t) = 0 khi t ≈ 18 hoặc t ≈ 55.
Bảng biến thiên của hàm số h(t) như sau:

Trên khoảng (0; 70), đồ thị hàm số h(t) đi qua các điểm (0; 250), (10; 50), (50; 250) và (60; 250).

Lời giải
Xét hàm số Q(t) = với t ∈ [0; 20].
Ta có Q'(t) = ;
Q'(t) = 0 hoặc t = 0.
Bảng biến thiên của hàm số trên đoạn [0; 20] như sau:
Từ bảng biến thiên suy ra tại , tức là lưu lượng nước của con sông lớn nhất là m3/phút tại thời điểm phút.
Cảnh báo lũ được đưa ra khi lưu lượng nước của con sông lên đến 550 m3/phút, tức là Q(t) ≥ 550 ⇔ ≥ 550 ⇔ ≥ 0 .
Lại có t ∈ [0; 20] nên .
Vậy tại thời điểm t ∈ [15; 5 + ] phút thì cảnh báo lũ được đưa ra.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.