Đường cong ở Hình 29 là đồ thị của hàm số:
A. y = x3 + x2 + 2x + 2.
B. y = – x3 – 4x2 – x + 2.
C. y = x3 + 3x2 – 4x + 2.
D. y = x3 + 3x2 + 4x + 2.
Đường cong ở Hình 29 là đồ thị của hàm số:

A. y = x3 + x2 + 2x + 2.
B. y = – x3 – 4x2 – x + 2.
C. y = x3 + 3x2 – 4x + 2.
D. y = x3 + 3x2 + 4x + 2.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta thấy đồ thị hàm số đi lên từ trái qua phải nên loại đáp án B.
Đồ thị hàm số đi qua điểm (– 2; – 2) nên thay vào các đáp án ta loại được đáp án A và đáp án C. Vậy đường cong trong Hình 29 là đồ thị hàm số ở đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 50].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 50), h'(t) = 0 khi t ≈ 18.
h(0) = 250; h(18) = 8,08; h(50) = 250.
Do đó, tại t = 18.
Vậy tại thời điểm t = 18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.
b) Xét hàm số h(t) = – 0,01t3 + 1,1t2 – 30t + 250 với t ∈ [0; 70].
Ta có h'(t) = – 0,03t2 + 2,2t – 30;
Trên khoảng (0; 70), h'(t) = 0 khi t ≈ 18 hoặc t ≈ 55.
Bảng biến thiên của hàm số h(t) như sau:

Trên khoảng (0; 70), đồ thị hàm số h(t) đi qua các điểm (0; 250), (10; 50), (50; 250) và (60; 250).

Lời giải
Tập xác định của hàm số đã cho là ℝ.
Ta có y' = 2x – 2;
y' = 0 ⇔ 2x – 2 = 0 ⇔ x = 1.
Bảng biến thiên của hàm số như sau:

Vẽ đồ thị hàm số:
Hàm số y = x2 – 2x – 3 là hàm số bậc hai nên đồ thị của nó là một parabol có:
+ Đỉnh I(1; – 4);
+ Giao với trục hoành tại các điểm A(3; 0) và B(– 1; 0);
+ Giao với trục tung tại điểm C(0; – 3).
Ta vẽ được đồ thị hàm số đã cho như sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.