Câu hỏi:

12/07/2024 1,241

Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như Hình 4. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. (−∞; 0).

B. (3; +∞).

C. (−1; 1).

D. (−∞; −1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Dựa vào đồ thị, ta thấy:

Hàm số đồng biến trên các khoảng (−1; 1) và (3; +∞).

Hàm số nghịch biến trên các khoảng (−∞; 1) và (1; 3).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một thí nghiệm y học, người ta cấy

1 000 con vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức:

,

trong đó t là thời gian tính bằng giây (t  0) (Nguồn R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Trong khoảng thời gian nào từ lúc nuôi cấy, lượng vi khuẩn sẽ tăng lên?

Xem đáp án » 12/07/2024 18,306

Câu 2:

Cho hàm số y = f(x) có đạo hàm f'(x)= −x(2x5), x  ℝ. Khẳng định nào dưới đây đúng?

A. f(−2) < f(−1).

B. f(0) > f(2).

C. f(3) > f(5).

D. f(3) > f(2).

Xem đáp án » 12/07/2024 10,927

Câu 3:

Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình

                                               s(t) = t3 – 6t2 + 14t + 1, 

trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào của 5 giây đầu tiên thì vận tốc tức thời của chất điểm tăng lên?

Xem đáp án » 12/07/2024 5,743

Câu 4:

Cho hàm số f(x) có đạo hàm f'(x) = x2(x2 – 1)2(x – 2), x ℝ. Số điểm cực trị của hàm số đã cho là:

A. 1.

B. 2.

C. 3.

D. 4.

Xem đáp án » 12/07/2024 5,538

Câu 5:

Chứng minh rằng:

Hàm số đồng biến trên khoảng (−∞; 1) và nghịch biến trên khoảng  (1; +∞).

Xem đáp án » 12/07/2024 5,251

Câu 6:

Trong các hàm số sau, hàm số đồng biến trên ℝ là:                        

A. y = x − .

B. y = 2x3 − x2 + 5x + 1.

C. y = x4 + 2x2 − 3.

D. y = 2x2 + 3.

Xem đáp án » 12/07/2024 5,092

Câu 7:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A. (2; 0).

B. (4; +∞).

C. (−∞; 0).

D. (−2; −1).

Xem đáp án » 12/07/2024 4,657
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua