Câu hỏi:
12/07/2024 59Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hai biến cố sau:
A: “Linh kiện được chọn ra đạt tiêu chuẩn”;
B: “Linh kiện được chọn ra do nhà máy I sản xuất”.
Khi đó, ta có:
P(B) = 0,55; P() = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | ) = 0,87.
Sơ đồ hình cây biểu thị tình huống đã cho là:
Áp dụng công thức xác suất toàn phần, ta có:
P(A) = P(B) ∙ P(A | B) + P() ∙ P(A | ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.
Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho hai biến cố A, B với P(B) = 0,6; P(A | B) = 0,7 và P(A | ) = 0,4. Khi đó, P(A) bằng:
A. 0,7.
B. 0,4.
C. 0,58.
D. 0,52.
Câu 6:
Câu 7:
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.
Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?
về câu hỏi!