Câu hỏi:

12/07/2024 89

Hãy giải bài toán trong phần mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P() = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | ) = 0,87.

Sơ đồ hình cây biểu thị tình huống đã cho là:

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P() ∙ P(A | ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Năm 2001, Cộng đồng châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Không có xét nghiệm nào cho kết quả chính xác 100%. Một loại xét nghiệm, mà ở đây ta gọi là xét nghiệm A, cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70%, còn khi con bò không bị bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%. Biết rằng tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Hỏi khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là bao nhiêu?

Xem đáp án » 13/07/2024 3,645

Câu 2:

Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
Tính xác suất để linh kiện được lấy ra là linh kiện tốt.

Xem đáp án » 13/07/2024 3,027

Câu 3:

Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.

Xem đáp án » 13/07/2024 2,031

Câu 4:

Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.

Xem đáp án » 13/07/2024 1,799

Câu 5:

Được biết có 5% đàn ông bị mù màu, và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu?

Xem đáp án » 13/07/2024 1,099

Câu 6:

Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.

Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Xem đáp án » 12/07/2024 796

Câu 7:

Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

Xem đáp án » 13/07/2024 493

Bình luận


Bình luận