Một cửa hàng kinh doanh tổ chức rút thăm trúng thưởng cho hai loại sản phẩm. Tỉ lệ trúng thưởng của các loại sản phẩm I, II lần lượt là: 6%; 4%. Trong một hộp kín gồm các thăm cùng loại, người ta để lẫn lộn 200 chiếc thăm cho sản phẩm loại I và 300 chiếc thăm cho sản phẩm loại II. Một khách hàng lấy ngẫu nhiên 1 chiếc thăm từ chiếc hộp đó.
Giả sử chiếc thăm được lấy ra là trúng thưởng. Xác suất chiếc thăm đó thuộc loại sản phẩm nào là cao hơn?
Câu hỏi trong đề: Giải SGK Toán 12 CD Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Nếu chiếc thăm được lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc loại sản phẩm loại I là: P(B | A) = .
Nếu chiếc thăm được lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc loại sản phẩm loại II là: P( | A) = 1 – P(B | A) = 1 – 0,5 = 0,5.
Vậy nếu chiếc thăm được lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc hai loại sản phẩm I và II là như nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai biến cố:
A: “Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất”;
B: “Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ hai”.
Khi đó, xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng chính là xác suất có điều kiện P(B | A).
Lấy một viên bi lần thứ nhất có 40 cách chọn, viên bi được lấy ra không bỏ lại hộp nên lấy một viên bi lần thứ hai có 39 cách chọn. Do đó n(Ω) = 40 ∙ 39.
Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, ở lần lấy thứ hai có 39 cách chọn. Do đó, n(A) = 28 ∙ 39.
Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, lấy ra viên bi màu vàng ở lần lấy thứ hai có 27 cách chọn. Do đó, n(A ∩ B) = 28 ∙ 27.
Khi đó, P(B | A) = .
Vậy xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng là .
Lời giải
Ta thấy xác suất nhiễm bệnh của X khi X là một người trong nhóm bị xét nghiệm có kết quả dương tính chính là P( | B). Áp dụng công thức Bayes, ta có:
P( | B) =
=
.
Vậy xác suất để X là người nhiễm bệnh là 0,295.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.