Câu hỏi:

13/07/2024 1,142

Giả sử trong một nhóm người có 2 người nhiễm bệnh, 58 người còn lại là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7%.
Giả sử X là một người trong nhóm bị xét nghiệm có kết quả dương tính. Tính xác suất để X là người nhiễm bệnh.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thấy xác suất nhiễm bệnh của X khi X là một người trong nhóm bị xét nghiệm có kết quả dương tính chính là P( | B). Áp dụng công thức Bayes, ta có:

P( | B) = = .

Vậy xác suất để X là người nhiễm bệnh là 0,295.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.

Xem đáp án » 13/07/2024 1,325

Câu 2:

Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1, bia số 2 lần lượt là 0,8; 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,8. Xét hai biến cố sau:

A: “Xạ thủ đó bắn trúng bia số 1”;

B: “Xạ thủ đó bắn trúng bia số 2”.

Biết xạ thủ đó không bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.

Xem đáp án » 13/07/2024 633

Câu 3:

Một cửa hàng kinh doanh tổ chức rút thăm trúng thưởng cho hai loại sản phẩm. Tỉ lệ trúng thưởng của các loại sản phẩm I, II lần lượt là: 6%; 4%. Trong một hộp kín gồm các thăm cùng loại, người ta để lẫn lộn 200 chiếc thăm cho sản phẩm loại I và 300 chiếc thăm cho sản phẩm loại II. Một khách hàng lấy ngẫu nhiên 1 chiếc thăm từ chiếc hộp đó.
Tính xác suất để chiếc thăm được lấy ra là trúng thưởng.

Xem đáp án » 13/07/2024 325

Câu 4:

Một cửa hàng kinh doanh tổ chức rút thăm trúng thưởng cho hai loại sản phẩm. Tỉ lệ trúng thưởng của các loại sản phẩm I, II lần lượt là: 6%; 4%. Trong một hộp kín gồm các thăm cùng loại, người ta để lẫn lộn 200 chiếc thăm cho sản phẩm loại I và 300 chiếc thăm cho sản phẩm loại II. Một khách hàng lấy ngẫu nhiên 1 chiếc thăm từ chiếc hộp đó.
Giả sử chiếc thăm được lấy ra là trúng thưởng. Xác suất chiếc thăm đó thuộc loại sản phẩm nào là cao hơn?

Xem đáp án » 13/07/2024 309

Câu 5:

Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1, bia số 2 lần lượt là 0,8; 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,8. Xét hai biến cố sau:

A: “Xạ thủ đó bắn trúng bia số 1”;

B: “Xạ thủ đó bắn trúng bia số 2”.

Biết xạ thủ đó bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.

Xem đáp án » 13/07/2024 297

Câu 6:

Cho hai biến cố xung khắc A, B với P(A) = 0,2; P(B) = 0,4. Khi đó, P(A | B) bằng:

A. 0,5.

B. 0,2.

C. 0,4.

D. 0.

Xem đáp án » 12/07/2024 165

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store