Cho mặt phẳng (P1):
2x + 2y + 2z + 1 = 0 (1)
và mặt phẳng (P2):
x + y + z – 1 = 0 (2)
Gọi
,
lần lượt là vectơ pháp tuyến của hai mặt phẳng (P1), (P2) (Hình 14). Tìm liên hệ giữa
và
.
Cho mặt phẳng (P1):
2x + 2y + 2z + 1 = 0 (1)
và mặt phẳng (P2):
x + y + z – 1 = 0 (2)
Gọi ,
lần lượt là vectơ pháp tuyến của hai mặt phẳng (P1), (P2) (Hình 14). Tìm liên hệ giữa
và
.

Quảng cáo
Trả lời:


Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn điểm M ∈ (P1). Suy ra khoảng cách từ điểm M đến mặt phẳng (P2) là:
.
Do khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng d(M, (P2)) nên khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng .
Lời giải
Phương trình mặt phẳng (P) là: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.