Chứng minh rằng khoảng cách từ điểm M(a; b; c) đến các mặt phẳng (Oyz), (Ozx), (Oxy) lần lượt bằng |a|, |b|, |c|.
Quảng cáo
Trả lời:
+ Ta có (Oyz): x = 0 nên khoảng cách từ điểm M đến mặt phẳng (Oyz) là:
d(M, (Oyz)) =
= |a|.
+ Ta có (Ozx): y = 0 nên khoảng cách từ điểm M đến mặt phẳng (Ozx) là:
d(M, (Ozx)) =
= |b|.
+ Ta có (Oxy): z = 0 nên khoảng cách từ điểm M đến mặt phẳng (Oxy) là:
d(M, (Oxy)) =
= |c|.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt phẳng (P) là:
.
Lời giải
Chọn điểm M
∈ (P1). Suy ra khoảng cách từ điểm M đến mặt phẳng (P2) là:
.
Do khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng d(M, (P2)) nên khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
