Chứng minh rằng khoảng cách từ điểm M(a; b; c) đến các mặt phẳng (Oyz), (Ozx), (Oxy) lần lượt bằng |a|, |b|, |c|.
Quảng cáo
Trả lời:
+ Ta có (Oyz): x = 0 nên khoảng cách từ điểm M đến mặt phẳng (Oyz) là:
d(M, (Oyz)) = = |a|.
+ Ta có (Ozx): y = 0 nên khoảng cách từ điểm M đến mặt phẳng (Ozx) là:
d(M, (Ozx)) = = |b|.
+ Ta có (Oxy): z = 0 nên khoảng cách từ điểm M đến mặt phẳng (Oxy) là:
d(M, (Oxy)) = = |c|.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn điểm M ∈ (P1). Suy ra khoảng cách từ điểm M đến mặt phẳng (P2) là:
.
Do khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng d(M, (P2)) nên khoảng cách giữa hai mặt phẳng song song (P1), (P2) bằng .
Lời giải
Phương trình mặt phẳng (P) là: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.