Câu hỏi:

13/07/2024 5,671

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số

B'(t) = 20t3 – 300t2 + 1 000t,

trong đó t tính bằng giờ (0 ≤ t ≤ 15), B'(t) tính bằng khách/giờ.

(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)

Biết rằng sau một giờ, 500 người đã có mặt tại lễ hội.

Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tốc độ thay đổi lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số B'(t) trên đoạn [0; 15].

Ta có B''(t) = (20t3 – 300t2 + 1 000t)' = 60t2 – 600t + 1 000.

Trên khoảng (0; 15), B''(t) = 0 khi hoặc .

B'(0) = 0; ; B'(15) = 15 000.

Do đó, tại t = 15.

Vậy tại thời điểm t = 15 giờ thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số P(t) là một nguyên hàm của hàm số P'(t).

Ta có .

Suy ra .

Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với t = 0 thì P = 500 hay P(0) = 500, suy ra , do đó C = 500.

Suy ra .

Vì sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi t = 1 thì P = 600, hay P(1) = 600, suy ra , do đó k = 150.

Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:

.

Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:

(vi khuẩn).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP