Câu hỏi:
01/10/2024 2,643
Cho hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\).
a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
b) Hàm số đã cho không có cực trị.
c) \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 2\).
d) Biết rằng trên \(\left( C \right)\) có 2 điểm phân biệt mà các tiếp tuyến của \(\left( C \right)\) tại các điểm đó song song với đường thẳng \(y = x\). Gọi \(k\) là tổng hoành độ của hai điểm đó, khi đó \(k\) là một số chính phương.
Cho hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\).
a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
b) Hàm số đã cho không có cực trị.
c) \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 2\).
d) Biết rằng trên \(\left( C \right)\) có 2 điểm phân biệt mà các tiếp tuyến của \(\left( C \right)\) tại các điểm đó song song với đường thẳng \(y = x\). Gọi \(k\) là tổng hoành độ của hai điểm đó, khi đó \(k\) là một số chính phương.
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) S.
Hướng dẫn giải
Xét hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
– Ta có \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne - 1\).
– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.
– Hàm số đã cho không có cực trị. Do đó, ý b) đúng.
– Tiệm cận:
+) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 1}} = 2;\,\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 1}} = 2\). Do đó, tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng \(y = 2\).
+) \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty ;\,\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty \). Do đó, tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 1\).
Vậy ý c) đúng.
– Gọi \({x_0}\) là hoành độ tiếp điểm của tiếp tuyến của \(\left( C \right)\) thỏa mãn yêu cầu bài toán. Khi đó, hệ số góc của tiếp tuyến này là \(f'\left( {{x_0}} \right) = \frac{3}{{{{\left( {{x_0} + 1} \right)}^2}}}\).
Vì tiếp tuyến song song với đường thẳng \(y = x\) có hệ số góc là \(k = 1\) nên
\(f'\left( {{x_0}} \right) = \frac{3}{{{{\left( {{x_0} + 1} \right)}^2}}} = 1\), suy ra \({x_0} = - 1 + \sqrt 3 \) hoặc \({x_0} = - 1 - \sqrt 3 \).
Vì đường thẳng \(y = x\) và \(\left( C \right)\) có hai giao điểm nên \(y = x\) không phải là tiếp tuyến của đồ thị hàm số.
Vậy tổng hoành độ của hai tiếp điểm là \(k = - 1 + \sqrt 3 + \left( { - 1} \right) - \sqrt 3 = - 2\), đây không phải là một số chính phương. Do đó, ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).

Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.
Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}\) dm.
Đường cao của hình chóp tứ giác đều là:
\(h = AO = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \) (dm).
Thể tích của khối chóp là:
\(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số
\(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).
Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) \approx 477,76\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} \approx \frac{1}{3}\sqrt {477,76} \approx 7,3\) (dm3).
Đáp số: \(7,3\).
Lời giải
Hướng dẫn giải
Ta có \(y' = {e^x}\left( {{x^2} + 2x - 3} \right)\).
Trên khoảng \(\left( { - 5; - 2} \right)\), \(y' = 0 \Leftrightarrow x = - 3\).
\(y\left( { - 5} \right) = \frac{{22}}{{{e^5}}};\,\,y\left( { - 3} \right) = \frac{6}{{{e^3}}};\,\,y\left( { - 2} \right) = \frac{1}{{{e^2}}}\).
Do đó, \(\mathop {\max }\limits_{\left[ { - 5; - 2} \right]} y = \frac{6}{{{e^3}}}\), suy ra \(a = 6,b = 3\). Vậy \(P = a + b = 6 + 3 = 9\).
Đáp số: \(9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.