Câu hỏi:
01/10/2024 344
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = AD = 1\) và \(AA' = 2\).
a) \(\overrightarrow {AD'} = \overrightarrow {BC'} \).
b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).
c) \(\overrightarrow {AC'} + \overrightarrow {CA'} + 2\overrightarrow {C'C} = \overrightarrow 0 \).
d) \(\overrightarrow {AD} \cdot \overrightarrow {A'B'} = 2\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = AD = 1\) và \(AA' = 2\).

a) \(\overrightarrow {AD'} = \overrightarrow {BC'} \).
b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).
c) \(\overrightarrow {AC'} + \overrightarrow {CA'} + 2\overrightarrow {C'C} = \overrightarrow 0 \).
d) \(\overrightarrow {AD} \cdot \overrightarrow {A'B'} = 2\).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) S.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(AD'C'B\) là hình bình hành, do đó \(\overrightarrow {AD'} = \overrightarrow {BC'} \). Vậy ý a) đúng.
– Tam giác \(ABD\) vuông cân tại \(A\) có \(AB = AD = 1\), suy ra \(\left| {\overrightarrow {BD} } \right| = BD = \sqrt 2 \).
Tam giác \(CDD'\) vuông tại \(D\) có \(CD = AB = 1,\,DD' = AA' = 2\), suy ra \(\left| {\overrightarrow {CD'} } \right| = CD' = \sqrt 5 \).
Vậy ý b) sai.
– Ta có \(\overrightarrow {AC'} + \overrightarrow {CA'} + 2\overrightarrow {C'C} = \left( {\overrightarrow {AC'} + \overrightarrow {C'C} } \right) + \left( {\overrightarrow {C'C} + \overrightarrow {CA'} } \right) = \overrightarrow {AC} + \overrightarrow {C'A'} = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow 0 \).
Do đó, ý c) đúng.
– Vì \(A'B' \bot \left( {ADD'A'} \right)\) nên \[A'B' \bot AD\], do đó \(\overrightarrow {AD} \cdot \overrightarrow {A'B'} = 0\). Vậy ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).

Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.
Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}\) dm.
Đường cao của hình chóp tứ giác đều là:
\(h = AO = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \) (dm).
Thể tích của khối chóp là:
\(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số
\(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).
Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) \approx 477,76\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} \approx \frac{1}{3}\sqrt {477,76} \approx 7,3\) (dm3).
Đáp số: \(7,3\).
Lời giải
Hướng dẫn giải
Ta có \(y' = {e^x}\left( {{x^2} + 2x - 3} \right)\).
Trên khoảng \(\left( { - 5; - 2} \right)\), \(y' = 0 \Leftrightarrow x = - 3\).
\(y\left( { - 5} \right) = \frac{{22}}{{{e^5}}};\,\,y\left( { - 3} \right) = \frac{6}{{{e^3}}};\,\,y\left( { - 2} \right) = \frac{1}{{{e^2}}}\).
Do đó, \(\mathop {\max }\limits_{\left[ { - 5; - 2} \right]} y = \frac{6}{{{e^3}}}\), suy ra \(a = 6,b = 3\). Vậy \(P = a + b = 6 + 3 = 9\).
Đáp số: \(9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.