Câu hỏi:

02/10/2024 935

Từ một đài quan sát, một người đặt mắt tại vị trí \[B.\] Người đó nhìn thấy một chiếc ô tô ở vị trí \[C\] theo phương \[BC\] tạo với phương nằm ngang \[Bx\] một góc là \(\widehat {CBx} = 25^\circ \) với \[Bx\,{\rm{//}}\,AC.\] Khi đó, khoảng cách giữa ô tô và chân đài quan sát là \[AC = 1,221{\rm{\;km}}{\rm{.}}\] Nếu ô tô từ vị trí \[C\] tiếp tục đi về phía chân đài quan sát với tốc độ \[60\] km/h thì sau 1 phút, người đó nhìn thấy ô tô ở vị trí \[D\] với góc \(\widehat {DBx} = \alpha \) (hình vẽ).
Từ một đài quan sát, một người đặt mắt tại vị trí B Người đó nhìn thấy một chiếc ô tô ở vị trí C theo phương BC tạo với phương nằm ngang Bx một góc là  (ảnh 1)

a) Tính chiều cao của đài quan sát (làm tròn kết quả đến hàng đơn vị của mét), biết độ cao từ tầm mắt của người đó đến đỉnh đài quan sát là \[3\] m.

b) Tính số đo góc \[\alpha \] (làm tròn kết quả đến hàng đơn vị của phút).

c) Tính khoảng cách từ mắt người quan sát đến vị trí \[D\] (làm tròn kết quả đến hàng đơn vị của mét).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đổi \(1,221{\rm{\;km}} = 1\,\,221{\rm{\;m}}.\)

a) Do \[Bx\,{\rm{//}}\,AC\;\] nên \[\widehat {ACB} = \widehat {CBx}\] (so le trong).

Vì \(\Delta ABC\) vuông tại \[A\] nên \(AB = AC \cdot {\rm{tan}}\widehat {ACB} = 1\,\,221 \cdot {\rm{tan}}25^\circ  \approx 569{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của đài quan sát khoảng: \[3 + 569 = 572\] (m).

b) Đổi: \[60\] km/h \[ = 1{\rm{ }}000\] m/phút.

Do \[Bx\,{\rm{//}}\,AC\;\] và \[AB \bot AC\] nên ta có \(\widehat {ABx} = \widehat {BAC} = 90^\circ .\)

Quãng đường \[CD\] là: \[CD = 1{\rm{ }}000 \cdot 1 = 1{\rm{ }}000\] (m).

Do đó: \[AD = AC - CD = 1{\rm{ }}221\; - 1{\rm{ }}000 = 221\] (m).

Xét \(\Delta ABD\) vuông tại \[A\] có: \({\rm{tan}}\widehat {ABD} = \frac{{AD}}{{AB}} \approx \frac{{221}}{{569}}.\) Suy ra \(\widehat {ABD} \approx 21^\circ 14'.\)

Mà \(\widehat {DBx} + \widehat {ABD} = \widehat {ABx} = 90^\circ .\)

Suy ra \(\alpha  = \widehat {DBx} = 90^\circ  - \widehat {ABD} \approx 90^\circ  - 21^\circ 14' = 68^\circ 46'.\)

c) Vì \(\Delta ABD\) vuông tại \[A\] nên \(AB = BD \cdot {\rm{cos}}\widehat {ABD}.\)

Suy ra \(BD = \frac{{AB}}{{{\rm{cos}}\widehat {ABD}}} \approx \frac{{569}}{{{\rm{cos}}\,21^\circ 14'}} \approx 610{\rm{\;(m)}}{\rm{.}}\)

Vậy khoảng cách từ mắt người quan sát đến vị trí \[D\] khoảng \[610\] mét.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \(ABC\) vuông tại \(A\). Khi đó, \(\sin \widehat {ABC}\) bằng: 

Xem đáp án » 02/10/2024 3,011

Câu 2:

Điều kiện xác định của phương trình \(\frac{1}{{x\left( {{x^2} + 4} \right)}} = \frac{{x + 1}}{x} - \frac{1}{{x - 2}}\) là 

Xem đáp án » 02/10/2024 1,883

Câu 3:

Giải bất phương trình ẩn \[x\] sau: \[\frac{{x - ab}}{{a + b}} + \frac{{x - bc}}{{b + c}} + \frac{{x - ac}}{{a + c}} > a + b + c\] với \[a,\,\,b,\,\,c > 0\].

Xem đáp án » 02/10/2024 1,457

Câu 4:

Cho \(\alpha \) và \(\beta \) là hai góc nhọn bất kì thỏa mãn \(\alpha + \beta = 90^\circ .\) Khẳng định nào sau đây là đúng? 

Xem đáp án » 02/10/2024 1,125

Câu 5:

Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?

Xem đáp án » 02/10/2024 861

Câu 6:

Cho tam giác \(MNP\) vuông tại \(M\) có \(MP = 4\) và \(\widehat {P\,} = 30^o .\) Nhận định nào sau đây là sai? 

Xem đáp án » 02/10/2024 703