Câu hỏi:

02/10/2024 3,770 Lưu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AC = 6\). Tỉ số lượng giác \(\tan C\) có kết quả gần nhất với giá trị nào dưới đây? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AC = 6\). Tỉ số lượng giác \(\tan C\) có kết quả gần nhất với giá trị nào dưới đây? 	A. \(1,33.\)	B. \(0,88.\)	C. \(0,68.\)	D. \(0,75.\) (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

⦁ Trước hết, ta chứng minh với \(a > 0\) và \(b > 0\) luôn có \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\]

Thật vậy, với \(a > 0\) và \(b > 0,\) ta có:

\[\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}} = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0.\]\(\)

Do đó \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\,\,\,\left( * \right)\]

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(2x > 0\) và \(y + z > 0,\) ta có:

\[\frac{1}{{2x}} + \frac{1}{{y + z}} \ge \frac{4}{{2x + y + z}}\]

Suy ra \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right).\]

Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(y > 0\) và \(z > 0,\) ta có:

\(\frac{1}{y} + \frac{1}{z} \ge \frac{4}{{y + z}}.\)

Suy ra \[\frac{1}{{y + z}} \le \frac{1}{4}\left( {\frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{{4y}} + \frac{1}{{4z}}.\]

Do đó: \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right) \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right).\]

Chứng minh tương tự, ta có:

\[\frac{1}{{x + 2y + z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right);\] \[\frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right).\]

Khi đó:

\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{4} \cdot 4 = 1\) (do \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4).\)

Vậy \(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)

Câu 2

Lời giải

Đáp án đúng là: A

Ta có: \(a < b\)\(ac > bc\) nên ta có \(c < 0\), tức \(c\) là số âm.

Vậy ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP