Câu hỏi:

02/10/2024 1,757

Cho các số thực dương \(x,\,\,y,\,\,z\) thỏa mãn \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4.\) Chứng bất đẳng thức sau:

\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

⦁ Trước hết, ta chứng minh với \(a > 0\) và \(b > 0\) luôn có \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\]

Thật vậy, với \(a > 0\) và \(b > 0,\) ta có:

\[\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}} = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0.\]\(\)

Do đó \[\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}.\,\,\,\left( * \right)\]

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(2x > 0\) và \(y + z > 0,\) ta có:

\[\frac{1}{{2x}} + \frac{1}{{y + z}} \ge \frac{4}{{2x + y + z}}\]

Suy ra \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right).\]

Áp dụng bất đẳng thức \(\left( * \right)\) cho hai số \(y > 0\) và \(z > 0,\) ta có:

\(\frac{1}{y} + \frac{1}{z} \ge \frac{4}{{y + z}}.\)

Suy ra \[\frac{1}{{y + z}} \le \frac{1}{4}\left( {\frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{{4y}} + \frac{1}{{4z}}.\]

Do đó: \[\frac{1}{{2x + y + z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{y + z}}} \right) \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right).\]

Chứng minh tương tự, ta có:

\[\frac{1}{{x + 2y + z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right);\] \[\frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right).\]

Khi đó:

\(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}}} \right) + \frac{1}{4}\left( {\frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{{2x}} + \frac{1}{{4y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{2y}} + \frac{1}{{4z}} + \frac{1}{{4x}} + \frac{1}{{4y}} + \frac{1}{{2z}}} \right)\)

\( = \frac{1}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) = \frac{1}{4} \cdot 4 = 1\) (do \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4).\)

Vậy \(\frac{1}{{2x + y + z}} + \frac{1}{{x + 2y + z}} + \frac{1}{{x + y + 2z}} \le 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Nếu \(a,\,\,b,\,\,c\) là ba số mà \(a < b\) và \(ac > bc\) thì \(c\) là 

Lời giải

Đáp án đúng là: A

Ta có: \(a < b\)\(ac > bc\) nên ta có \(c < 0\), tức \(c\) là số âm.

Vậy ta chọn phương án A.

Câu 3

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha .\) Tỉ số \(\frac{{HA}}{{BA}}\) bằng: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay