Câu hỏi:

03/10/2024 599 Lưu

Cho tứ giác \(ABCD\) có \(\alpha \) là góc nhọn tạo bởi hai đường chéo, chứng minh rằng:

\({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác \(ABCD\) có \(\alpha \) là góc nhọn tạo bởi hai đường chéo, chứng minh rằng: \({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\) (ảnh 1)

Gọi \(E\) là giao điểm của hai đường chéo \(AC\) và \(BD.\) Kẻ đường cao \(AH\) xuống \(BD\) và đường cao \(DK\) xuống \(AC\).

Xét \(\Delta AEH\) vuông tại \(H\) có: \(AH = AE.\sin \alpha .\)

Do đó \({S_{ADE}} = \frac{1}{2}DE \cdot AH = \frac{1}{2}DE \cdot AE \cdot \sin \alpha .\)

Ta có: \(\frac{{{S_{ADE}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}DK \cdot AE}}{{\frac{1}{2}DK \cdot AC}} = \frac{{AE}}{{AC}}\)

Suy ra \({S_{ADC}} = \frac{{AC}}{{AE}} \cdot {S_{ADE}} = \frac{{AC}}{{AE}} \cdot \frac{1}{2}DE \cdot AE \cdot \sin \alpha  = \frac{1}{2}DE \cdot AC \cdot \sin \alpha .\)

Tương tự, ta có: \({S_{ABC}} = \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)

Khi đó: \({S_{ABCD}} = {S_{ADC}} + {S_{ABC}} = \frac{1}{2}DE \cdot AC \cdot \sin \alpha  + \frac{1}{2}BE \cdot AC \cdot \sin \alpha \)

\( = \frac{1}{2}AC \cdot \left( {DE + BE} \right) \cdot \sin \alpha  = \frac{1}{2}AC \cdot BD \cdot \sin \alpha \).

Vậy \({S_{ABCD}} = \frac{1}{2}AC \cdot BD \cdot \sin \alpha .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cho tam giác \(OPQ\) vuông tại \(O\) có \(\widehat {Q\,} = 35^\circ \) và \(OQ = 10{\rm{ cm}}{\rm{.}}\) Tính độ dài các cạnh còn lại của tam giác \(OPQ\) (làm tròn kết quả đến hàng phần trăm đối với đơn vị của cm). b) Cánh tay robot đặt trên mặt đất và có vị trí như hình vẽ bên. Tính độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất. (ảnh 2)

a) Xét tam giác \(OPQ\) vuông tại \(O\), ta có:

⦁ \(OQ = OQ \cdot \tan Q = 10 \cdot \tan 35^\circ  \approx 7,00{\rm{\;(cm}});\)

⦁ \(OQ = PQ \cdot \cos Q\)

Suy ra \(PQ = \frac{{OQ}}{{\cos Q}} = \frac{{10}}{{\cos 35^\circ }} \approx 12,21{\rm{\;(cm)}}{\rm{.}}\)

Vậy \(OQ \approx 7,00{\rm{\;cm}},\,\,PQ \approx 12,21{\rm{\;cm}}.\)

b) Xét \(\Delta BCN\) vuông tại \(N,\) ta có:

\(BN = BC \cdot \sin \widehat {BCN} = 60 \cdot \sin 32^\circ  \approx 31,80{\rm{\;(cm)}}{\rm{.}}\)

Ta thấy \(NC\) và \(BM\) là các đoạn thẳng nằm trên phương ngang nên \(NC\,{\rm{//}}\,BM,\) suy ra \(\widehat {CBM} = \widehat {BCN} = 32^\circ \) (so le trong).

Khi đó, \(\widehat {ABM} = \widehat {ABC} - \widehat {CBM} = 53^\circ  - 32^\circ  = 21^\circ \).

Xét \(\Delta ABM\) vuông tại \(M\), ta có:

\(AM = AB \cdot \sin \widehat {ABM} = 60 \cdot \sin 21^\circ  \approx 21,50\) (cm).

Vậy, độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất là:

\(AM + BN + CP \approx 21,50 + 31,80 + 17 = 70,3\) (cm).

Câu 2

Lời giải

Đáp án đúng là: D

Phương trình bậc nhất hai ẩn có dạng \(ax + by = c\) với \(a \ne 0\) hoặc \(b \ne 0.\)

Phương trình \(\frac{1}{x} + 2y = - 3\) không có dạng trên, có chứa ẩn \(x\) dưới mẫu thức nên đây không phải phương trình bậc nhất hai ẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP